Protein sorting in the synaptic vesicle life cycle.
نویسندگان
چکیده
At early stages of differentiation neurons already contain many of the components necessary for synaptic transmission. However, in order to establish fully functional synapses, both the pre- and postsynaptic partners must undergo a process of maturation. At the presynaptic level, synaptic vesicles (SVs) must acquire the highly specialized complement of proteins, which make them competent for efficient neurotransmitter release. Although several of these proteins have been characterized and linked to precise functions in the regulation of the SV life cycle, a systematic and unifying view of the mechanisms underlying selective protein sorting during SV biogenesis remains elusive. Since SV components do not share common sorting motifs, their targeting to SVs likely relies on a complex network of protein-protein and protein-lipid interactions, as well as on post-translational modifications. Pleiomorphic carriers containing SV proteins travel and recycle along the axon in developing neurons. Nevertheless, SV components appear to eventually undertake separate trafficking routes including recycling through the neuronal endomembrane system and the plasmalemma. Importantly, SV biogenesis does not appear to be limited to a precise stage during neuronal differentiation, but it rather continues throughout the entire neuronal lifespan and within synapses. At nerve terminals, remodeling of the SV membrane results from the use of alternative exocytotic pathways and possible passage through as yet poorly characterized vacuolar/endosomal compartments. As a result of both processes, SVs with heterogeneous molecular make-up, and hence displaying variable competence for exocytosis, may be generated and coexist within the same nerve terminal.
منابع مشابه
Synaptophysin I selectively specifies the exocytic pathway of synaptobrevin 2/VAMP2.
Biogenesis and recycling of synaptic vesicles are accompanied by sorting processes that preserve the molecular composition of the compartments involved. In the present study, we have addressed the targeting of synaptobrevin 2/VAMP2 (vesicle-associated membrane protein 2), a critical component of the synaptic vesicle--fusion machinery, in a heterotypic context where its sorting is not confounded...
متن کاملDifferential Sorting of the Vesicular Glutamate Transporter 1 into a Defined Vesicular Pool Is Regulated by Light Signaling Involving the Clock Gene Period
Synaptic strength depends on the amount of neurotransmitter stored in synaptic vesicles. The vesicular transmitter content has recently been shown to be directly dependent on the expression levels of vesicular neurotransmitter transporters indicating that the transport capacity of synaptic vesicles is a critical determinant for synaptic efficacy.Using synaptic vesicles prepared fromwhole brain ...
متن کاملStonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling.
Clathrin-mediated endocytosis is involved in the internalization, recycling, and degradation of cycling membrane receptors as well as in the biogenesis of synaptic vesicle proteins. While many constitutively internalized cargo proteins are recognized directly by the clathrin adaptor complex AP-2, stimulation-dependent endocytosis of membrane proteins is often facilitated by specialized sorting ...
متن کاملTrafficking of cell-surface beta-amyloid precursor protein: evidence that a sorting intermediate participates in synaptic vesicle recycling.
We recently demonstrated that the Alzheimer's beta-amyloid precursor protein (APP) is internalized from the axonal cell surface. In this study, we use biochemical and cell biological methods to characterize endocytotic compartments that participate in trafficking of APP in central neurons. APP is present in presynaptic clathrin-coated vesicles purified from bovine brain, together with the recyc...
متن کاملDifferential sorting of the vesicular glutamate transporter 1 into a defined vesicular pool is regulated by light signaling involving the clock gene Period2.
Synaptic strength depends on the amount of neurotransmitter stored in synaptic vesicles. The vesicular transmitter content has recently been shown to be directly dependent on the expression levels of vesicular neurotransmitter transporters indicating that the transport capacity of synaptic vesicles is a critical determinant for synaptic efficacy. Using synaptic vesicles prepared from whole brai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Progress in neurobiology
دوره 80 4 شماره
صفحات -
تاریخ انتشار 2006