Robust fractional quantum Hall effect in the N=2 Landau level in bilayer graphene

نویسندگان

  • Georgi Diankov
  • Chi-Te Liang
  • François Amet
  • Patrick Gallagher
  • Menyoung Lee
  • Andrew J Bestwick
  • Kevin Tharratt
  • William Coniglio
  • Jan Jaroszynski
  • Kenji Watanabe
  • Takashi Taniguchi
  • David Goldhaber-Gordon
چکیده

The fractional quantum Hall effect is a canonical example of electron-electron interactions producing new ground states in many-body systems. Most fractional quantum Hall studies have focussed on the lowest Landau level, whose fractional states are successfully explained by the composite fermion model. In the widely studied GaAs-based system, the composite fermion picture is thought to become unstable for the N≥2 Landau level, where competing many-body phases have been observed. Here we report magneto-resistance measurements of fractional quantum Hall states in the N=2 Landau level (filling factors 4<|ν|<8) in bilayer graphene. In contrast with recent observations of particle-hole asymmetry in the N=0/N=1 Landau levels of bilayer graphene, the fractional quantum Hall states we observe in the N=2 Landau level obey particle-hole symmetry within the fully symmetry-broken Landau level. Possible alternative ground states other than the composite fermions are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconventional fractional quantum Hall effect in monolayer and bilayer graphene

The commensurability condition is applied to determine the hierarchy of fractional fillings of Landau levels in monolayer and in bilayer graphene. The filling rates for fractional quantum Hall effect (FQHE) in graphene are found in the first three Landau levels in one-to-one agreement with the experimental data. The presence of even denominator filling fractions in the hierarchy for FQHE in bil...

متن کامل

Fractional quantum Hall effect in multicomponent systems THÈSE

We study a number of fractional quantum Hall systems, such as quantum Hall bilayers, wide quantum wells or graphene, where underlying multicomponent degrees of freedom lead to the novel physical phenomena. In the quantum Hall bilayer at the filling factor ν = 1 we study mixed composite boson-composite fermion trial wave functions in order to describe the disordering of the exciton superfluid as...

متن کامل

Bilayer graphene. Electron-hole asymmetric integer and fractional quantum Hall effect in bilayer graphene.

The nature of fractional quantum Hall (FQH) states is determined by the interplay between the Coulomb interaction and the symmetries of the system. The distinct combination of spin, valley, and orbital degeneracies in bilayer graphene is predicted to produce an unusual and tunable sequence of FQH states. Here, we present local electronic compressibility measurements of the FQH effect in the low...

متن کامل

Theoretical expectations for a fractional quantum Hall effect in graphene

Due to its fourfold spin-valley degeneracy, graphene in a strong magnetic field may be viewed as a four-component quantum Hall system. We investigate the consequences of this particular structure on a possible, yet unobserved, fractional quantum Hall effect in graphene within a trial-wavefunction approach and exact-diagonalisation calculations. This trial-wavefunction approach generalises an or...

متن کامل

Su(3) and Su(4) Singlet Quantum Hall States at V = 2/3 Accessed Terms of Use Detailed Terms Su(3) and Su(4) Singlet Quantum Hall States at Ν ¼ 2=3

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We report on an exact diagonalization study of fractional quantum Hall states at a filling factor of ν ¼ 2=3 in a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016