Genome-wide association studies of rheumatoid arthritis data via multiple hypothesis testing methods for correlated tests
نویسندگان
چکیده
Genome-wide association studies often involve testing hundreds of thousands of single-nucleotide polymorphisms (SNPs). These tests may be highly correlated because of linkage disequilibrium among SNPs. Multiple testing correction ignoring the correlation among markers, as is done in the Bonferroni procedure, can cause loss of power. Several multiple testing adjustment methods accounting for correlations among tests have been developed and have shown improved power compared to the Bonferroni procedure. These methods include a Monte Carlo (MC) method and a method of computing p-values adjusted for correlated tests. The objective of this study is to apply these two multiple testing methods to genome-wide association study of the Genetic Analysis Workshop 16 rheumatoid arthritis data from the North American Rheumatoid Arthritis Consortium, to compare the performance of these two methods to the Bonferroni procedure in identifying susceptibility loci underlying rheumatoid arthritis, and to discuss the strengths and weaknesses of these methods. The results show that both the MC method and p-values adjusted for correlated tests method identified more significant SNPs, thus potentially have higher power than the corresponding Bonferroni methods using the same test statistics as in the MC method and p-values adjusted for correlated tests, respectively. Simulation studies demonstrate that the MC method may have slightly higher power than the p-values adjusted for correlated tests method.
منابع مشابه
Genome-wide association analysis of rheumatoid arthritis data via haplotype sharing
We present computationally simple association tests based on haplotype sharing that can be easily applied to genome-wide association studies, while allowing use of fast (but not likelihood-based) haplotyping algorithms, and properly accounting for the uncertainty introduced by using inferred haplotypes. We also give haplotype sharing analyses that adjust for population stratification. We apply ...
متن کاملGenome-wide analysis of haplotype interaction for the data from the North American Rheumatoid Arthritis Consortium
Recent genome-wide association studies on several complex diseases have focused on individual single-nucleotide polymorphism (SNP) analysis; however, not many studies have reported interactions among genes perhaps because the gene-gene and gene-environment interaction analysis could be infeasible due to heavy computing requirements. In this study we propose a new strategy for exploring the inte...
متن کاملExploiting population samples to enhance genome-wide association studies of disease.
It is widely acknowledged that genome-wide association studies (GWAS) of complex human disease fail to explain a large portion of heritability, primarily due to lack of statistical power-a problem that is exacerbated when seeking detection of interactions of multiple genomic loci. An untapped source of information that is already widely available, and that is expected to grow in coming years, i...
متن کاملApplication of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies
Most genetic association studies only genotype a small proportion of cataloged single-nucleotide polymorphisms (SNPs) in regions of interest. With the catalogs of high-density SNP data available (e.g., HapMap) to researchers today, it has become possible to impute genotypes at untyped SNPs. This in turn allows us to test those untyped SNPs, the motivation being to increase power in association ...
متن کاملElastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis
The current trend in genome-wide association studies is to identify regions where the true disease-causing genes may lie by evaluating thousands of single-nucleotide polymorphisms (SNPs) across the whole genome. However, many challenges exist in detecting disease-causing genes among the thousands of SNPs. Examples include multicollinearity and multiple testing issues, especially when a large nu...
متن کامل