A Comparative Evaluation of Effect of Reinforced Autopolymerizing Resin on the Flexural Strength of Repaired Heat-polymerized Denture Base Resin before and after Thermocycling
نویسندگان
چکیده
Aims and Objective Denture fractures are a common problem in clinical practice. Despite the use of different reinforcement materials (metal wires, metal plates, and various types of fibers) for denture repairs, recurrent fractures are still common. The purpose of this study was to compare the maximum flexural loads of the heat-polymerized denture base resin when repaired with autopolymerizing resin reinforced with relatively smaller diameter metal wires and glass fibers, before and after thermocycling. Materials and Methods Heat polymerized rectangular specimens were fabricated and repaired with autopolymerized resin and different reinforcement materials. Stainless steel wires, coaxial wires, beta-titanium wires, and glass fibers were used as reinforcement materials. Metal wires were sandblasted before placing in the center of the specimen along with autopolymerizing resin. Control specimens were repaired without any reinforcements. Intact heat- and self-cure specimens were also prepared for comparison. Half of the specimens of each group were subjected to thermocycle stressing (5°C and 55°C, 30 s dwell time) for 2000 cycles. All the specimens, nonthermocycled as well as thermocycled, were then tested for flexural strength by using 3 point flexural test in Lloyd's Universal testing machine at 5 mm/min crosshead speed. The maximum flexural loads (N) for each specimen were recorded. The readings, thus obtained, were subjected to statistical analysis using two-way ANOVA and Tukey's multiple comparison test. Results The metal wire reinforcements increased the flexural strength of repaired specimens, whereas, glass fiber reinforcement produced slightly lower flexural strength when compared to those of control specimens, i.e., repair without any reinforcement. The highest flexural strength was demonstrated by specimens repaired with coaxial wire reinforcements (50.01 and 43.77 N before and after thermocycling, respectively). The increase in flexural strength with the use of stainless steel wire (45.12 and 41.56 N) and beta-titanium wire reinforcements (45.54 and 42.61N) was insignificant. Conclusions Coaxial wire reinforcement produced significantly higher flexural loads than control. Increase in strength with stainless steel wire and beta-titanium wire was insignificant, whereas glass fiber reinforcement reduced the strength.
منابع مشابه
Comparative Evaluation of the Flexural Strength of Heat Polymerized Acrylic Resin with the Addition of 8% and 13% Aluminum Oxide Powder: An In-vitro Study
Introduction: Acrylic resins have been used successfully as denture bases. However, acrylic resin denture base materials are brittle and have poor strength and thermal conductivity. Therefore, it is essential to improve the flexural strength of heat polymerized acrylic resin. The present study aimed to evaluate and compare the flexural strength of heated polymerized acrylic res...
متن کاملComparative study of flexural strength of four acrylic resins before and after thermocycling process
Objectives Acrylic resins are one of the most important denture base materials in dentistry due to their favourable mechanical and physical properties. The purpose of present study is to compare 4 available acrylic flexural strength properties before and after thermocycling. Methods Acrylic resin specimens of Meliodent (Heraeus Kulzer, Hanau, Germany), Vertex (Vertex-dental BV, Zeist, Netherla...
متن کاملFlexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers.
STATEMENT OF PROBLEM Despite the favorable properties of conventional PMMA used as a denture base material, its fracture resistance could be improved. PURPOSE This in vitro study was performed to determine whether the flexural strength of a commercially available, heat-polymerized acrylic denture base material could be improved through reinforcement with 3 types of fibers. MATERIAL AND METH...
متن کاملEffect of repair resin type and surface treatment on the repair strength of polyamide denture base resin.
The purpose of the present study was to evaluate the effects of different repair resins and surface treatments on the repair strength of a polyamide denture base material. Polyamide resin specimens were prepared and divided into nine groups according to the surface treatments and repair materials. The flexural strengths were measured with a 3-point bending test. Data were analyzed with a 2-way ...
متن کاملReinforcing effect of glass fiber-reinforced composite reinforcement on flexural strength at proportional limit of a repaired denture base resin
Objective: This study evaluated the reinforcing effect of glass fiber-reinforced composite (FRC) reinforcement on flexural strength at the proportional limit (FS-PL) of a repaired denture base resin. Materials and methods: Repaired denture base resins reinforced with metal and with FRC reinforcement, and that without reinforcement were tested. The ultimate flexural strength, the FS-PL and the e...
متن کامل