Regular Infinite Dimensional Lie Groups

نویسندگان

  • Andreas Kriegl
  • Peter W. Michor
  • ANDREAS KRIEGL
  • PETER W. MICHOR
چکیده

Regular Lie groups are infinite dimensional Lie groups with the property that smooth curves in the Lie algebra integrate to smooth curves in the group in a smooth way (an ‘evolution operator’ exists). Up to now all known smooth Lie groups are regular. We show in this paper that regular Lie groups allow to push surprisingly far the geometry of principal bundles: parallel transport exists and flat connections integrate to horizontal foliations as in finite dimensions. As consequences we obtain that Lie algebra homomorphisms intergrate to Lie group homomorphisms, if the source group is simply connected and the image group is regular.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite Dimensional Lie Groups

Regular Lie groups are infinite dimensional Lie groups with the property that smooth curves in the Lie algebra integrate to smooth curves in the group in a smooth way (an ‘evolution operator’ exists). Up to now all known smooth Lie groups are regular. We show in this paper that regular Lie groups allow to push surprisingly far the geometry of principal bundles: parallel transport exists and fla...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

Structure Groups and Holonomy in Infinite Dimensions

We give a theorem of reduction of the structure group of a principal bundle P with regular structure group G. Then, when G is in the classes of regular Lie groups defined by T.Robart in [13], we define the closed holonomy group of a connection as the minimal closed Lie subgroup of G for which the previous theorem of reduction can be applied. We also prove an infinite dimensional version of the ...

متن کامل

A Lie Group Structure on Strict Groups

The notion of strict groups encompasses many important infinite dimensional groups in differential geometry. It is shown that important strict groups carry the structure of a regular Lie group in the convenient setting. In the contact case this is related to the integrability of the Poisson algebra of a prequantizable Poisson manifold.

متن کامل

Some Geometric Evolution Equations Arising as Geodesic Equations on Groups of Diffeomorphisms Including the Hamiltonian Approach

Introduction 1. A general setting and a motivating example 2. Weak symplectic manifolds 3. Right invariant weak Riemannian metrics on Lie groups 4. The Hamiltonian approach 5. Vanishing geodesic distance on groups of diffeomorphisms 6. The regular Lie group of rapidly decreasing diffeomorphisms 7. The diffeomorphism group of S or R, and Burgers’ hierarchy 8. The Virasoro-Bott group and the Kort...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996