Evolution of surface waviness in thin films via volume and surface diffusion

نویسندگان

  • Rahul Panat
  • K. Jimmy Hsia
  • David G. Cahill
چکیده

Deformation mechanisms involving mass transport by stress driven diffusion influence a large number of technological problems. We study the formation of undulations on surfaces of stressed films at high temperature by exploring the deformation kinetics governed by volume and surface diffusion. A governing equation is derived that gives the amplitude change of such surfaces as a function of time. A parametric study is then carried out using a range of practically important input values of the film material properties. The results show that at the dominant instability wavelength, under low stress and high temperature conditions, the roughening is only caused by volume diffusion, while smoothing is only caused by surface diffusion. The results from the current model are compared to experimental observations reported in the literature for the roughening of metallic film surfaces under the low stress and high temperature conditions common in thermal barrier systems. ∗Corresponding author. Email: [email protected], Fax: 1(217) 244 5707.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTICAL PROPERTIES OF THIN Cu FILMS AS A FUNCTION OF SUBSTRATE TEMPERATURE

Copper films (250 nm) deposited on glass substrates, at different substrate temperatures. Their optical properties were measured by ellipsometery (single wavelength of 589.3 nm) and spectrophotometery in the spectral range of 200–2600 nm. Kramers Kronig method was used for the analysis of the reflectivity curves of Cu films to obtain the optical constants of the films, while ellipsometery measu...

متن کامل

Motion of Elastic Thin Films by Anisotropic Surface Diffusion with Curvature Regularization

Short time existence, uniqueness, and regularity for a surface diffusion evolution equation with curvature regularization are proved in the context of epitaxially strained twodimensional films. This is achieved by using the H−1-gradient flow structure of the evolution law, via De Giorgi’s minimizing movements. This seems to be the first short time existence result for a surface diffusion type g...

متن کامل

Hydrophilicity of Silica Nano-Porous Thin Films: Calcination Temperature Effects

In this research work, silica nano-porous thin films were deposited on glass substrates by layer by layer method. The thin films were calcinated at various calcination temperatures (200, 300, 400, and 500 °C). The morphology, surface characteristics, surface roughness and hydrophilic properties of the thin films were investigated by field emission scanning electron microscopy, attenuated total ...

متن کامل

A Phase Field Model for Grain Growth and Thermal Grooving in Thin Films with Orientation Dependent Surface Energy

Abstract. A phase field model for simulating grain growth and thermal grooving in thin films is presented. Orientation dependence of the surface free energy and misorientation dependence of the grain boundary free energy are included in the model. Moreover, the model can treat different mechanisms for groove formation, namely through volume diffusion, surface diffusion, evaporation-condensation...

متن کامل

Simulation of Fabrication toward High Quality Thin Films for Robotic Applications by Ionized Cluster Beam Deposition

The most commonly used method for the production of thin films is based on deposition of atoms or molecules onto a solid surface. One of the suitable method is to produce high quality metallic, semiconductor and organic thin film is Ionized cluster beam deposition (ICBD), which are used in electronic, robotic, optical, optoelectronic devices. Many important factors such as cluster size, cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004