Fast convergence of quasi-Monte Carlo for a class of isotropic integrals

نویسنده

  • Anargyros Papageorgiou
چکیده

We consider the approximation of d-dimensional weighted integrals of certain isotropic functions. We are mainly interested in cases where d is large. We show that the convergence rate of quasi-Monte Carlo for the approximation of these integrals is O( √ logn/n). Since this is a worst case result, compared to the expected convergence rate O(n−1/2) of Monte Carlo, it shows the superiority of quasi-Monte Carlo for this type of integral. This is much faster than the worst case convergence, O(log n/n), of quasi-Monte Carlo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficient conditions for fast quasi-Monte Carlo convergence

We study the approximation of d-dimensional integrals. We present sufficient conditions for fast quasi-Monte Carlo convergence. They apply to isotropic and non-isotropic problems and, in particular, to a number of problems in computational finance. We show that the convergence rate of quasi-Monte Carlo is of order n−1+p{logn} −1/2 with p ≥ 0. This is a worst case result. Compared to the expecte...

متن کامل

Higher order quasi-Monte Carlo methods: A comparison

Quasi-Monte Carlo is usually employed to speed up the convergence of Monte Carlo in approximating multivariate integrals. While convergence of the Monte Carlo method is O(N−1/2), that of plain quasi-Monte Carlo can achieve O(N−1). Several methods exist to increase its convergence to O(N−α ), α > 1, if the integrand has enough smoothness. We discuss two methods: lattice rules with periodization ...

متن کامل

Quasi-Monte Carlo estimation in generalized linear mixed models

Generalized linear mixed models (GLMMs) are useful for modelling longitudinal and clustered data, but parameter estimation is very challenging because the likelihood may involve high-dimensional integrals that are analytically intractable. GaussHermite quadrature (GHQ) approximation can be applied but is only suitable for low-dimensional random effects. Based on the Quasi-Monte Carlo (QMC) appr...

متن کامل

Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples

Much of the recent work dealing with quasi-random methods has been aimed at establishing the best possible asymptotic rates of convergence to zero of the error resulting when a finite-dimensional integral is replaced by a finite sum of integrand values. In contrast with this perspective to concentrate on asymptotic convergence rates, this paper emphasizes quasi-random methods that are effective...

متن کامل

Quasi-monte Carlo Integration over a Simplex and the Entire Space

Monte Carlo integration is a widely used method to approximate high dimensional integrals. However, the randomness of this method causes the convergence to be very slow. Quasi-Monte Carlo integration uses low discrepancy sequences instead of pseudorandom sequences. The points from these sequences are more uniformly distributed. This causes the convergence to be much faster. Most research in qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2001