The Soybean GH 2 / 4 Gene That Encodes a Glutathione S - Transferase Has a Promoter That 1 s Activated by a Wide Range of Chemical Agents ’

نویسندگان

  • Tim Ulmasov
  • Akemi Ohmiya
  • Gretchen Hagen
  • Tom Guilfoyle
چکیده

Transcriptional activation of the soybean (Glycine max) C H Z / 4 gene (also referred to as GmhspZ6-A) and increase in abundance of the C H Z / 4 mRNA (also referred to as pCE54) have been previously shown to occur following treatment of soybean seedlings with auxins, nonauxin analogs, heavy metals, and a variety of other agents. To determine whether the G H Z / 4 promoter is responsive to an array of different agents, we have analyzed the inducibility of the C H Z / 4 promoter fused to the p-glucuronidase reporter gene in transgenic tobacco (Nicotiana tabacum) plants. We have shown that a wide variety of chemical agents induce this promoter in a tissue-specific and concentration-dependent manner. In addition, we have used an affinity-purified antibody raised against recombinant G H Z / 4 protein to show that the G H Z / 4 protein increases in response to auxin application and is localized in the cytosol of soybean cells. Recombinant G H Z / 4 protein can be purified to homogeneity on a glutathione-agarose resin, and the purified protein has glutathione Stransferase activity when assayed with the substrate 1 -chloro-2,4-dinitrobenzene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The soybean GH2/4 gene that encodes a glutathione S-transferase has a promoter that is activated by a wide range of chemical agents.

Transcriptional activation of the soybean (Glycine max) GH2/4 gene (also referred to as Gmhsp26-A) and increase in abundance of the GH2/4 mRNA (also referred to as pCE54) have been previously shown to occur following treatment of soybean seedlings with auxins, nonauxin analogs, heavy metals, and a variety of other agents. To determine whether the GH2/4 promoter is responsive to an array of diff...

متن کامل

Determination of Glutathione S-Transferase e2 Region (GSTe2) in DDT Susceptible and Resistant Anopheles stephensi Populations: Significance and Application of Nucleotide and Amino Acid Comparison

Glutathione S-transferases (GSTs) are a major family of detoxification enzymes which possess a wide range of substrate specificities. Interest in insect GSTs has primarily focused on their role in insecticide resistance. In this study, following World Health Organization (WHO) routine susceptibility test, DNA was extracted from specimens of Anopheles stephensi collected from the Kazeroon distri...

متن کامل

Genetic polymorphisms of glutathione-s-transferase M1 and T1 genes with risk of diabetic retinopathy in Iranian population

Objective(s):To the best of our knowledge, this is the first report on the contributions of GST genetic variants to the risk of diabetic retinopathy in an Iranian population. Therefore, the objective of this study was to determine whether sequence variation in glutathione S-transferase gene (GSTM1 and GSTT1) is associated with development of diabetic retinopathy in type 2 diabetes mellitus (T2D...

متن کامل

A gene from Aspergillus nidulans with similarity to URE2 of Saccharomyces cerevisiae encodes a glutathione S-transferase which contributes to heavy metal and xenobiotic resistance.

Aspergillus nidulans is a saprophytic ascomycete that utilizes a wide variety of nitrogen sources. We identified a sequence from A. nidulans similar to the glutathione S-transferase-like nitrogen regulatory domain of Saccharomyces cerevisiae Ure2. Cloning and sequencing of the gene, designated gstA, revealed it to be more similar to URE2 than the S. cerevisiae glutathione S-transferases. Howeve...

متن کامل

Production and Evaluation of Polyclonal Rabbit Anti-Human p53 Antibody Using Bacterially Expressed Glutathione S-transferase-p53 fusion protein

p53 is a key tumor suppressor gene that is targeted for inactivation during human tumorigenesis. In this study, we produced and characterized polyclonal antihuman p53 antibody. The cDNA encoding the completehuman p53 protein was cloned into pGEX-4T-1 and expressed in Escherichia coli as a fusion protein with Schistosoma japonicum glutathione S-transferase (GST). The rabbits were immunized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002