Neuromodulators produce distinct activated states in neocortex.

نویسندگان

  • Manuel A Castro-Alamancos
  • Tanuj Gulati
چکیده

Neocortical population activity varies between deactivated and activated states marked by the presence and absence of slow oscillations, respectively. Neocortex activation occurs during waking and vigilance and is readily induced in anesthetized animals by stimulating the brainstem reticular formation, basal forebrain, or thalamus. Neuromodulators are thought to be responsible for these changes in cortical activity, but their selective cortical effects (i.e., without actions in other brain areas) on neocortical population activity in vivo are not well defined. We found that selective cholinergic and noradrenergic stimulation of the barrel cortex produces well differentiated activated states in rats. Cholinergic cortical stimulation activates the cortex by abolishing synchronous slow oscillations and shifting firing to a tonic mode, which increases in rate at high doses. This shift causes the sensory thalamus itself to become activated. In contrast, noradrenergic cortical stimulation activates the cortex by abolishing synchronous slow oscillations but suppresses overall cortical firing rate, which deactivates the thalamus. Cortical activation produced by either of these neuromodulators leads to suppressed sensory responses and more focused receptive fields. High-frequency sensory stimuli are best relayed to barrel cortex during cortical cholinergic activation because this also activates the thalamus. Cortical neuromodulation sets different cortical and thalamic states that may serve to control sensory information processing according to behavioral contingencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of sensory thalamocortical synaptic networks during information processing states.

The thalamocortical network consists of the pathways that interconnect the thalamus and neocortex, including thalamic sensory afferents, corticothalamic and thalamocortical pathways. These pathways are essential to acquire, analyze, store and retrieve sensory information. However, sensory information processing mostly occurs during behavioral arousal, when activity in thalamus and neocortex con...

متن کامل

High-pass filtering of corticothalamic activity by neuromodulators released in the thalamus during arousal: in vitro and in vivo.

The thalamus is the principal relay station of sensory information to the neocortex. In return, the neocortex sends a massive feedback projection back to the thalamus. The thalamus also receives neuromodulatory inputs from the brain stem reticular formation, which is vigorously activated during arousal. We investigated the effects of two neuromodulators, acetylcholine and norepinephrine, on cor...

متن کامل

Neocortex network activation and deactivation states controlled by the thalamus.

Neocortex network activity varies from a desynchronized or activated state typical of arousal to a synchronized or deactivated state typical of quiescence. Such changes are usually attributed to the effects of neuromodulators released in the neocortex by nonspecific activating systems originating in basal forebrain and brain stem reticular formation. As a result, the only role attributed to tha...

متن کامل

Modulation of neocortical interneurons: extrinsic influences and exercises in self-control.

Neocortical GABAergic interneurons are a highly heterogeneous cell population that forms complex functional networks and has key roles in information processing within the cerebral cortex. Mechanisms that control the output of these cells are therefore crucial in regulating excitability within the neocortex during normal and pathophysiological activities. In addition to subtype-specific modulat...

متن کامل

The state of somatosensory cortex during neuromodulation 3 4 5 6

34 During behavioral quiescence, such as slow wave sleep and anesthesia, the neocortex is 35 in a deactivated state characterized by the presence of slow oscillations. During arousal, slow 36 oscillations are absent and the neocortex is in an activated state that greatly impacts information 37 processing. Neuromodulators acting in neocortex are believed to mediate these state changes, but 38 th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 34 37  شماره 

صفحات  -

تاریخ انتشار 2014