Magnetic helicity in stellar dynamos: new numerical experiments

نویسنده

  • AXEL BRANDENBURG
چکیده

The theory of large scale dynamos is reviewed with particular emphasis on the magnetic helicity constraint in the presence of closed and open boundaries. In the presence of closed or periodic boundaries, helical dynamos respond to the helicity constraint by developing small scale separation in the kinematic regime, and by showing long time scales in the nonlinear regime where the scale separation has grown to the maximum possible value. A resistively limited evolution towards saturation is also found at intermediate scales before the largest scale of the system is reached. Larger aspect ratios can give rise to different structures of the mean field which are obtained at early times, but the final saturation field strength is still decreasing with decreasing resistivity. In the presence of shear, cyclic magnetic fields are found whose period is increasing with decreasing resistivity, but the saturation energy of the mean field is in strong super-equipartition with the turbulent energy. It is shown that artificially induced losses of small scale field of opposite sign of magnetic helicity as the large scale field can, at least in principle, accelerate the production of large scale (poloidal) field. Based on mean field models with an outer potential field boundary condition in spherical geometry, we verify that the sign of the magnetic helicity flux from the large scale field agrees with the sign of α. For solar parameters, typical magnetic helicity fluxes lie around 10 Mx

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solar and stellar dynamos – latest developments

Recent progress in the theory of solar and stellar dynamos is reviewed. Particular emphasis is placed on the mean-field theory which tries to describe the collective behavior of the magnetic field. In order to understand solar and stellar activity, a quantitatively reliable theory is necessary. Much of the new developments center around magnetic helicity conservation which is seen to be importa...

متن کامل

Astrophysical magnetic fields and nonlinear dynamo theory

The current understanding of astrophysical magnetic fields is reviewed with particular emphasis on nonlinear dynamo theory. Analytic and numerical results are discussed both for small scale dynamos, where helicity is unimportant, and for large scale dynamos, where kinetic helicity is crucial. Large scale dynamos produce small scale magnetic helicity as a waste product that quenches the large sc...

متن کامل

Non-linear and chaotic dynamo regimes

An update is given on the current status of solar and stellar dynamos. At present, it is still unclear why stellar cycle frequencies increase with rotation frequency in such a way that their ratio increases with stellar activity. The small-scale dynamo is expected to operate in spite of a small value of the magnetic Prandtl number in stars. Whether or not the global magnetic activity in stars i...

متن کامل

Turbulent dynamos with advective magnetic helicity flux

Many astrophysical bodies harbour magnetic fields that are thought to be sustained by a dynamo process. However, it has been argued that the production of large-scale magnetic fields by meanfield dynamo action is strongly suppressed at large magnetic Reynolds numbers owing to the conservation of magnetic helicity. This phenomenon is known as catastrophic quenching. Advection of magnetic fields ...

متن کامل

How Astrophysical Mean Field Dynamos Can Circumvent Existing Quenching Constraints

Mean field dynamo theory is a leading candidate to explain the large scale magnetic flux in galaxies and stars. However, controversy arises over the extent of premature quenching by the backreaction of the growing field. We distinguish between rapid dynamo action, which is required by astrophysical systems, and resistively limited dynamo action. We show how the flow of magnetic helicity is impo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001