Kinome-wide functional analysis highlights the role of cytoskeletal remodeling in somatic cell reprogramming.

نویسندگان

  • Kumi Sakurai
  • Indrani Talukdar
  • Veena S Patil
  • Jason Dang
  • Zhonghan Li
  • Kung-Yen Chang
  • Chih-Chung Lu
  • Violaine Delorme-Walker
  • Celine Dermardirossian
  • Karen Anderson
  • Dorit Hanein
  • Chao-Shun Yang
  • Dongmei Wu
  • Yang Liu
  • Tariq M Rana
چکیده

The creation of induced pluripotent stem cells (iPSCs) from somatic cells by ectopic expression of transcription factors has galvanized the fields of regenerative medicine and developmental biology. Here, we report a kinome-wide RNAi-based analysis to identify kinases that regulate somatic cell reprogramming to iPSCs. We prepared 3,686 small hairpin RNA (shRNA) lentiviruses targeting 734 kinase genes covering the entire mouse kinome and individually examined their effects on iPSC generation. We identified 59 kinases as barriers to iPSC generation and characterized seven of them further. We found that shRNA-mediated knockdown of the serine/threonine kinases TESK1 or LIMK2 promoted mesenchymal-to-epithelial transition, decreased COFILIN phosphorylation, and disrupted Actin filament structures during reprogramming of mouse embryonic fibroblasts. Similarly, knockdown of TESK1 in human fibroblasts also promoted reprogramming to iPSCs. Our study reveals the breadth of kinase networks regulating pluripotency and identifies a role for cytoskeletal remodeling in modulating the somatic cell reprogramming process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming

a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...

متن کامل

P-27: Conservation Cloning of Esfahan Mouflon

Background: Among wide range of bio-conservational strategies envisaged, recent accomplishments in the field of somatic cell nuclear transfer (SCNT) holds considerable promise due to its unique potential to decelerate or prevent rapid loss of animal genetic resources, and even to revive extinct species. This study was undertaken to investigate whether domestic sheep in vitro matured and enuclea...

متن کامل

I-12: Nuclear Reprogramming in Bovin Somatic Cell Nuclear Transfer

Somatic cell nuclear transfer (SCNT or cloning) returns a differentiated cell to a totipotent status; a process termed nuclear reprogramming. Reproductive cloning has potential applications in both agriculture and biomedicine, but is limited by low efficiency. To understand the deficiencies of nuclear reprogramming, our research has focused on both candidate genes and global gene expression pat...

متن کامل

I-8: Somatic Cell Nuclear Reprogramming byMouse Oocytes Endures Beyond ReproductiveDecline

Background: The mammalian oocyte has the unique feature of supporting fertilization and normal development while being able of reprogramming the nuclei of somatic cells towards pluripotency, and occasionally even totipotency. Whilst oocyte quality is known to decay with somatic ageing, it is not a given that different biological functions decay concurrently. In this study, we tested whether ooc...

متن کامل

Data on evolution of intrinsically disordered regions of the human kinome and contribution of FAK1 IDRs to cytoskeletal remodeling

We present data on the evolution of intrinsically disordered regions (IDRs) taking into account the entire human protein kinome. The evolutionary data of the IDRs with respect to the kinase domains (KDs) and kinases as a whole protein (WP) are reported. Further, we have reported its post translational modifications of FAK1 IDRs and their contribution to the cytoskeletal remodeling. We also repo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell stem cell

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2014