siRNA suppression of hTERT using activatable cell-penetrating peptides in hepatoma cells
نویسندگان
چکیده
Activatable cell-penetrating peptides (aCPPs) allow non-viral, low cytotoxic and selective delivery of compounds into target cells for cancer therapy. In tumour cells, up-regulation of human telomerase reverse transcriptase (hTERT) frequently occurs and is being considered as a target in cancer diagnosis and treatment. siRNA sequence that target hTERT mRNA can silence the gene and reduce hTERT protein expression to reduce cell proliferation and inhibit cell growth. In our study, we tested a matrix metalloproteinase-2 (MPP2) aCPP in delivering hTERT siRNA into hepatocellular carcinoma cells (SMMC-7721) to silence the hTERT gene. Cultured SMMC-7721 cells were transfected with a complex of aCPPs and hTERT-specific siRNA-encoding or control plasmids. Compared with cells treated with the complex of control plasmid-CPPs, cells treated with the hTERT-specific siRNA-encoding plasmid-CPP complex had a prolonged G1-phase, but a shorter G2/S-phase, indicating a G1-arrest. Treatment with the hTERT-specific siRNA resulted in a significant decrease (by 26%; P<0.05) in hTERT mRNA levels. The aCPPs tested in this study provides a non-viral delivery of siRNA into cancer cells to silence target genes in cancer therapy.
منابع مشابه
Downregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملLong-term suppression of telomerase expression in HeLa cell clones, transfected with an expression vector carrying siRNA targeting hTERT mRNA.
HeLa cell cultures were used as model systems for small interfering RNA (siRNA) induced knockdown of mRNA expression of the human telomerase catalytic subunit, telomerase reverse transcriptase (hTERT). Four 21-bp siRNAs targeting different sites of the hTERT mRNA were designed, and the siRNA molecules produced by a T7 transcription system in vitro. In transient transfection assays on HeLa cells...
متن کاملBMC Molecular Biology
Background: We attempted to clone candidate genes on 10p14–15 which may regulate hTERT expression, through exon trapping using 3 BAC clones covering the region. After obtaining 20 exons, we examined the function of RGM249 (RGM: RNA gene for miRNAs) we cloned from primary cultured human hepatocytes and hepatoma cell lines. We confirmed approximately 20 bp products digested by Dicer, and investig...
متن کاملApplications of Cell-Penetrating Peptides for Tumor Targeting and Future Cancer Therapies
Cell-penetrating peptides provide a highly promising strategy for intracellular drug delivery. One relevant clinical application of cell-penetrating peptides is cancer therapeutics. Peptide based delivery could increase the uptake of drugs in tumor cells and thereby increase the efficacy of the treatment, either of conventional small molecular drugs or oligonucleotide based therapeutics. This r...
متن کاملKnockdown of hTERT by siRNA inhibits cervical cancer cell growth in vitro and in vivo.
Human telomerase reverse transcriptase (hTERT) is the catalytic component of telomerase that facilitates tumor cell invasion and proliferation. It has been reported that telomerase and hTERT are significantly upregulated in majority of cancers including cervical cancer, thus, downregulation of hTERT is a promising target in malignant tumor treatment. We established a short interfering RNA (siRN...
متن کامل