Kinetic and hydrodynamic models of chemotactic aggregation

نویسنده

  • Pierre-Henri Chavanis
چکیده

We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the analogy between bacterial colonies and self-gravitating systems and between the chemotactic collapse and the gravitational collapse (Jeans instability). We also show that the basic equations of chemotaxis are similar to nonlinear mean field Fokker-Planck equations so that a notion of effective generalized thermodynamics can be developed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collective chemotactic dynamics in the presence of self-generated fluid flows.

In microswimmer suspensions locomotion necessarily generates fluid motion, and it is known that such flows can lead to collective behavior from unbiased swimming. We examine the complementary problem of how chemotaxis is affected by self-generated flows. A kinetic theory coupling run-and-tumble chemotaxis to the flows of collective swimming shows separate branches of chemotactic and hydrodynami...

متن کامل

Particle, Kinetic, and Hydrodynamic Models of Swarming

We review the state-of-the-art in the modelling of the aggregation and collective behavior of interacting agents of similar size and body type, typically called swarming. Starting with individual-based models based on “particle”-like assumptions, we connect to hydrodynamic/macroscopic descriptions of collective motion via kinetic theory. We emphasize the role of the kinetic viewpoint in the mod...

متن کامل

A stochastic Keller-Segel model of chemotaxis

We introduce stochastic models of chemotaxis generalizing the deterministic KellerSegel model. These models include fluctuations which are important in systems with small particle numbers or close to a critical point. Following Dean’s approach, we derive the exact kinetic equation satisfied by the density distribution of cells. In the mean field limit where statistical correlations between cell...

متن کامل

Numerical High-Field Limits in Two-Stream Kinetic Models and 1D Aggregation Equations

Numerical resolution of two-stream kinetic models in strong aggregative setting is considered. To illustrate our approach, we consider an 1D kinetic model for chemotaxis in hydrodynamic scaling and the high field limit of the Vlasov-Poisson-Fokker-Planck system. A difficulty is that, in this aggregative setting, weak solutions of the limiting model blow up in finite time, therefore the scheme s...

متن کامل

Kinetic Models for Biologically Active Suspensions

Biologically active suspensions, such as suspensions of swimming microorganisms, exhibit fascinating dynamics including large-scale collective motions and pattern formation, complex chaotic flows with good mixing properties, enhanced passsive tracer diffusion, among others. There has been much recent interest in modeling and understanding these effects, which often result from long-ranged fluid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008