Activin ligands are required for the re-activation of Smad2 signalling after neurulation and vascular development in Xenopus tropicalis.
نویسندگان
چکیده
The importance of Transforming Growth Factor β (TGFβ) signalling during early development has been well established. In particular, Nodal ligands have been shown to play essential roles for the specification and the patterning of the mesendoderm, axes formation and organogenesis. Activin ligands, like Nodal, signal by inducing the phosphorylation of the intracellular signal transducers Smad2 and Smad3. However, the roles of Activins during embryonic development are much less understood. Here, we report that during Xenopus tropicalis development two waves of Smad2 phoshorylation can be observed, first during gastrulation and then a second one after neurulation. Using a knock-down approach, we show that the second wave of Smad2 phosphorylation depends on activinβa (actβa) and activinβb (actβb) expression. Knocking down the expression of actβa, or treating the embryos with a chemical inhibitor inhibiting TGFβ receptor I (TGFβRI) activity after neurulation result in a decrease of the expression of endothelial cell markers and a lack of blood flow in Xenopus tadpoles. Taken together these data suggest that Activin ligands play an important role during vascular development in Xenopus tropicalis embryos.
منابع مشابه
Rab5-mediated endocytosis of activin is not required for gene activation or long-range signalling in Xenopus.
Morphogen gradients provide positional cues for cell fate specification and tissue patterning during embryonic development. One important aspect of morphogen function, the mechanism by which long-range signalling occurs, is still poorly understood. In Xenopus, members of the TGF-beta family such as the nodal-related proteins and activin act as morphogens to induce mesoderm and endoderm. In an e...
متن کاملXSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos.
Transforming growth factor (TGF)-beta family members play a central role in mesoderm induction during early embryogenesis in Xenopus. Although a number of target genes induced as an immediate-early response to activin-like members of the family have been described, little is known about the molecular mechanisms involved. Our systematic analysis of the activin induction of the target gene XFKH1 ...
متن کامل21-P050 The role of Alsin, a guanine exchange factor for Rab5 GTPase, in early Xenopus development
and the activated signalling pathways investigated. To ensure equivalent activation of downstream pathways by each ligand, phosphorylated-smad2 levels were assayed by Western blot. Up to 100-fold higher concentrations of Xnr1 than ActivinA were required to induce equivalent levels of phosphorylation of smad2. The expression of well-known downstream targets of Activin and Xnr1 was assayed by qua...
متن کاملDominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus.
Smads are central mediators of signal transduction for the TGFbeta superfamily. However, the precise functions of Smad-mediated signaling pathways in early development are unclear. Here we demonstrate a requirement for Smad2 signaling in dorsoanterior axis formation during Xenopus development. Using two point mutations of Smad2 previously identified in colorectal carcinomas, we show that Smad2 ...
متن کاملNotch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A
Loss of mesodermal competence (LMC) during Xenopus development is a well known but little understood phenomenon that prospective ectodermal cells (animal caps) lose their competence for inductive signals, such as activin A, to induce mesodermal genes and tissues after the start of gastrulation. Notch signaling can delay the onset of LMC for activin A in animal caps [Coffman, C.R., Skoglund, P.,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of developmental biology
دوره 58 10-12 شماره
صفحات -
تاریخ انتشار 2014