Chemically Driven Interfacial Coupling in Charge-Transfer Mediated Functional Superstructures.
نویسندگان
چکیده
Organic charge-transfer superstructures are enabling new interfacial electronics, such as organic thermoelectrics, spin-charge converters, and solar cells. These carbon-based materials could also play an important role in spin-based electronics due to their exceptionally long spin lifetime. However, to explore these potentials a coherent design strategy to control interfacial charge-transfer interaction is indispensable. Here we report that the control of organic crystallization and interfacial electron coupling are keys to dictate external stimuli responsive behaviors in organic charge-transfer superstructures. The integrated experimental and computational study reveals the importance of chemically driven interfacial coupling in organic charge-transfer superstructures. Such degree of engineering opens up a new route to develop a new generation of functional charge-transfer materials, enabling important advance in all organic interfacial electronics.
منابع مشابه
Influence of interface interaction on the moiré superstructures of graphene on transition-metal substrates
The formation of moiré superstructures between graphene and its underlying substrate has attracted significant attention because it significantly influences the morphology and properties of graphene. Through the density functional theory (DFT) calculations conducted on graphene/Re(0001) and graphene/Ir(111) moiré superstructures, we found that in contrast to the strain-driven moiré superstructu...
متن کاملInterfacial charge-transfer absorption: 3. Application to semiconductor-molecule assemblies.
Interfacial charge-transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the energy levels of a metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here we utilize a previously published model (J. Phys. Chem. B 2005, 109, 10251) ...
متن کاملAll-polymeric control of nanoferronics.
In the search for light and flexible nanoferronics, significant research effort is geared toward discovering the coexisting magnetic and electric orders in crystalline charge-transfer complexes. We report the first example of multiferroicity in centimeter-sized crystalline polymeric charge-transfer superstructures that grow at the liquid-air interface and are controlled by the regioregularity o...
متن کاملDexter energy transfer pathways.
Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and...
متن کاملElectrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries
Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an xidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity nd better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2016