A Fast Learning Strategy Using Pattern Selection for Feedforward Neural Networks

نویسندگان

  • Szilárd Vajda
  • Hubert Cecotti
  • Yves Rangoni
  • Abdel Belaïd
چکیده

Intelligent pattern selection is an active learning strategy where the classifiers select during training the most informative patterns. This paper investigates such a strategy where the informativeness of a pattern is measured as the approximation error produced by the classifier. The algorithm builds the training corpus starting from a small randomly chosen initial dataset and new patterns are added to the learning corpus based on their error sensitivity. The training dataset expansion is based on the selection of the most erroneous patterns. Our experimental results on MNIST 1 separated digit dataset show that only 3.26% of training data are sufficient for training purpose without decreasing the performance (98.36%) of the resulting neural classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Distortion tolerant pattern recognition based on self-organizing feature extraction

A generic, modular, neural network-based feature extraction and pattern classification system is proposed for finding essentially two-dimensional objects or object parts from digital images in a distortion tolerant manner, The distortion tolerance is built up gradually by successive blocks in a pipeline architecture. The system consists of only feedforward neural networks, allowing efficient pa...

متن کامل

Using Artificial Neural Network Algorithm to Predict Tensile Properties of Cotton-Covered Nylon Core Yarns

Artificial Neural Networks are information processing systems. Over the past several years, these algorithms have received much attention for their applications in pattern completing, pattern matching and classification and also for their use as a tool in various areas of problem solving. In this work, an Artificial Neural Network model is presented for predicting the tensile properties of co...

متن کامل

Using Artificial Neural Network Algorithm to Predict Tensile Properties of Cotton-Covered Nylon Core Yarns

Artificial Neural Networks are information processing systems. Over the past several years, these algorithms have received much attention for their applications in pattern completing, pattern matching and classification and also for their use as a tool in various areas of problem solving. In this work, an Artificial Neural Network model is presented for predicting the tensile &#10properties of ...

متن کامل

Robust adaptive learning of feedforward neural networks via LMI optimizations

Feedforward neural networks (FNNs) have been extensively applied to various areas such as control, system identification, function approximation, pattern recognition etc. A novel robust control approach to the learning problems of FNNs is further investigated in this study in order to develop efficient learning algorithms which can be implemented with optimal parameter settings and considering ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006