Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator.
نویسندگان
چکیده
The rpoS gene encodes the sigma factor which was identified in several gram-negative bacteria as a central regulator during stationary phase. rpoS gene regulation is known to respond to cell density, showing higher expression in stationary phase. For Pseudomonas aeruginosa, it has been demonstrated that the cell-density-dependent regulation response known as quorum sensing interacts with this regulatory response. Using the rpoS promoter of P. putida, we identified a genomic Tn5 insertion mutant of P. putida which showed a 90% decrease in rpoS promoter activity, resulting in less RpoS being present in a cell at stationary phase. Molecular analysis revealed that this mutant carried a Tn5 insertion in a gene, designated psrA (Pseudomonas sigma regulator), which codes for a protein (PsrA) of 26.3 kDa. PsrA contains a helix-turn-helix motif typical of DNA binding proteins and belongs to the TetR family of bacterial regulators. The homolog of the psrA gene was identified in P. aeruginosa; the protein showed 90% identity to PsrA of P. putida. A psrA::Tn5 insertion mutant of P. aeruginosa was constructed. In both Pseudomonas species, psrA was genetically linked to the SOS lexA repressor gene. Similar to what was observed for P. putida, a psrA null mutant of P. aeruginosa also showed a 90% reduction in rpoS promoter activity; both mutants could be complemented for rpoS promoter activity when the psrA gene was provided in trans. psrA mutants of both Pseudomonas species lost the ability to induce rpoS expression at stationary phase, but they retained the ability to produce quorum-sensing autoinducer molecules. PsrA was demonstrated to negatively regulate psrA gene expression in Pseudomonas and in Escherichia coli as well as to be capable of activating the rpoS promoter in E. coli. Our data suggest that PsrA is an important regulatory protein of Pseudomonas spp. involved in the regulatory cascade controlling rpoS gene regulation in response to cell density.
منابع مشابه
In silico Analysis and Molecular Modeling of RNA Polymerase, Sigma S (RpoS) Protein in Pseudomonas aeruginosa PAO1
Background: Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. The rpoS (RNA polymerase, sigma S) gene encodes sigma-38 (σ38, or RpoS), a 37.8 kDa protein in Pseudomonas aeruginosa (P. aeruginosa) strains. RpoS is a central regulator of the general stress response and operates in both retroa...
متن کاملPsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. tomato strain DC3000.
Pseudomonas syringae pv. tomato strain DC3000, a pathogen of tomato and Arabidopsis, occurs as an epiphyte. It produces N-acyl homoserine lactones (AHLs) which apparently function as quorum-sensing signals. A Tn5 insertion mutant of DC3000, designated PsrA(-) (Psr is for Pseudomonas sigma regulator), overexpresses psyR (a LuxR-type regulator of psyI) and psyI (the gene for AHL synthase), and it...
متن کاملThe Mutation of the rpoS Gene, the Central Regulator of Stationary Phase, Affects the Cell Division in Flexibacter chinensis
A one kb portion of the rpoS gene from Flexibacter chinensis was isolated by PCR, sequenced and compared to the rpoS gene of a variety of other organisms. The gene was found to be 98% similar to previously sequenced genes. Mutation of the rpoS gene with tri-parental mating produced strain JR101 and the growth rate of the mutant was compared with that of the wild-type. The mutant grew slower, an...
متن کاملPip, a novel activator of phenazine biosynthesis in Pseudomonas chlororaphis PCL1391.
Secondary metabolites are important factors for interactions between bacteria and other organisms. Pseudomonas chlororaphis PCL1391 produces the antifungal secondary metabolite phenazine-1-carboxamide (PCN) that inhibits growth of Fusarium oxysporum f. sp. radius lycopersici the causative agent of tomato foot and root rot. Our previous work unraveled a cascade of genes regulating the PCN biosyn...
متن کاملPseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA
Extracellular polysaccharides are important components of biofilms. In non-mucoid Pseudomonas aeruginosa strains, the Pel and Psl polysaccharides are major structural components of the biofilm matrix. In this study, we demonstrate that the alternative σ-factor RpoS is a positive transcriptional regulator of psl gene expression. Furthermore, we show that psl mRNA has an extensive 5' untranslated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 183 12 شماره
صفحات -
تاریخ انتشار 2001