Mechanical contrast in spectroscopic magnetomotive optical coherence elastography.

نویسندگان

  • Adeel Ahmad
  • Pin-Chieh Huang
  • Nahil A Sobh
  • Paritosh Pande
  • Jongsik Kim
  • Stephen A Boppart
چکیده

The viscoelastic properties of tissues are altered during pathogenesis of numerous diseases and can therefore be a useful indicator of disease status and progression. Several elastography studies have utilized the mechanical frequency response and the resonance frequencies of tissue samples to characterize their mechanical properties. However, using the resonance frequency as a source of mechanical contrast in heterogeneous samples is complicated because it not only depends on the viscoelastic properties but also on the geometry and boundary conditions. In an elastography technique called magnetomotive optical coherence elastography (MM-OCE), the controlled movement of magnetic nanoparticles (MNPs) within the sample is used to obtain the mechanical properties. Previous demonstrations of MM-OCE have typically used point measurements in elastically homogeneous samples assuming a uniform concentration of MNPs. In this study, we evaluate the feasibility of generating MM-OCE elastograms in heterogeneous samples based on a spectroscopic approach which involves measuring the magnetomotive response at different excitation frequencies. Biological tissues and tissue-mimicking phantoms with two elastically distinct regions placed in side-by-side and bilayer configurations were used for the experiments, and finite element method simulations were used to validate the experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves.

Magnetic particles are versatile imaging agents that have found wide spread applicability in diagnostic, therapeutic, and rheology applications. In this study, we demonstrate that mechanical waves generated by a localized inclusion of magnetic nanoparticles can be used for assessment of the tissue viscoelastic properties using magnetomotive optical coherence elastography. We show these capabili...

متن کامل

Spectroscopic optical coherence elastography

We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomogr...

متن کامل

Dual-coil magnetomotive optical coherence tomography for contrast enhancement in liquids.

Magnetomotive optical coherence tomography (MM-OCT) is a functional extension of OCT which utilizes magnetically responsive materials that are modulated by an external magnetic field for contrast enhancement and for elastography to assess the structural and viscoelastic properties of the surrounding tissues. Traditionally, magnetomotive contrast relies on the interaction between the displacemen...

متن کامل

Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography.

We present a new method for performing dynamic elastography of soft tissue samples. By sensing nanoscale displacements with optical coherence tomography, a chirped, modulated force is applied to acquire the mechanical spectrum of a tissue sample within a few seconds. This modulated force is applied via magnetic nanoparticles, named 'nanotransducers', which are diffused into the tissue, and whic...

متن کامل

Imaging magnetically labeled cells with magnetomotive optical coherence tomography.

We introduce a novel contrast mechanism for optical coherence tomography (OCT) whereby the optical scattering of magnetically labeled cells is modified by means of an externally applied magnetic field. This modification is made through the addition of a small electromagnet to the imaging arm of a conventional OCT interferometer. We measure the magnetomotive OCT signal by differencing pairs of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 60 17  شماره 

صفحات  -

تاریخ انتشار 2015