Palmitoylation and polymerization of hepatitis C virus NS4B protein.
نویسندگان
چکیده
Hepatitis C Virus (HCV) NS4B protein induces a specialized membrane structure which may serve as the replication platform for HCV RNA replication. In the present study, we demonstrated that NS4B has lipid modifications (palmitoylation) on two cysteine residues (cysteines 257 and 261) at the C-terminal end. Site-specific mutagenesis of these cysteine residues on individual NS4B proteins and on an HCV subgenomic replicon showed that the lipid modifications, particularly of Cys261, are important for protein-protein interaction in the formation of the HCV RNA replication complex. We further demonstrated that NS4B can undergo polymerization. The main polymerization determinants were mapped in the N-terminal cytosolic domain of NS4B protein; however, the lipid modifications on the C terminus also facilitate the polymerization process. The lipid modification and the polymerization activity could be two properties of NS4B important for its induction of the specialized membrane structure involved in viral RNA replication.
منابع مشابه
Analysis of Immumoreactivity of Heterologously Expressed Non-structural Protein 4B (NS4B) from Hepatitis C Virus (HCV) Genotype 1a
Background: Detection of hepatitis C virus specific antibodies is the initial step in chronic HCV diagnosis. HCV NS4B is among the most immunogenic HCV antigens and has been widely used in commercial Enzyme Immunoassays (EIA). Additionally, NS4B, a key protein in the virus replication, can be an alternative target for antiviral therapy. Objectives: Development of a new method for high-level ex...
متن کاملThe predominant species of nonstructural protein 4B in hepatitis C virus-replicating cells is not palmitoylated.
Hepatitis C virus (HCV) represents a significant global health burden. Viral replication is thought to occur in close association with remodelled host cell membranes, with non-structural protein 4B (NS4B) being a key player in this process. NS4B is a poorly characterized integral membrane protein, which has been reported to be palmitoylated at its carboxy-terminal end. In order to extend this o...
متن کاملThe Future of HCV Therapy: NS4B as an Antiviral Target
Chronic hepatitis C virus (HCV) infection is a major worldwide cause of liver disease, including cirrhosis and hepatocellular carcinoma. It is estimated that more than 170 million individuals are infected with HCV, with three to four million new cases each year. The current standard of care, combination treatment with interferon and ribavirin, eradicates the virus in only about 50% of chronical...
متن کاملTopology of the membrane-associated hepatitis C virus protein NS4B.
Hepatitis C virus (HCV) belongs to the Hepacivirus genus in the Flaviviridae family. Among the least known viral proteins in this family is the nonstructural protein NS4B, which has been suggested to be a part of the replication complex. Hydrophobicity plots indicate a common profile among the NS4B proteins from different members of the Flaviviridae family, suggesting a common function. In orde...
متن کاملInhibition of expression of hepatitis C virus 1b genotype core and NS4B genes in HepG2 cells using artificial microRNAs.
The present study aimed to evaluate the silencing effect of artificial microRNAs (amiRNAs) against the hepatitis C virus (HCV) 1b (HCV1b) genotype core (C) and non-structural protein 4B (NS4B) genes. pDsRed-monomer-Core and pDsRed-monomer-NS4B plasmids, containing the target genes were constructed. A total of eight artificial micro RNA (amiRNA)-expressing plasmids, namely, pmiRE-C-mi1 to -mi4 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 80 12 شماره
صفحات -
تاریخ انتشار 2006