, mKdV , SINE - GORDON SOLITON EQUATIONS

نویسنده

  • STEPHEN C. ANCO
چکیده

A bi-Hamiltonian hierarchy of complex vector soliton equations is derived from geometric flows of non-stretching curves in the Lie groups G = SO(N + 1), SU(N) ⊂ U(N), generalizing previous work on integrable curve flows in Riemannian symmetric spaces G/SO(N). The derivation uses a parallel frame and connection along the curves, involving the Klein geometry of the group G. This is shown to yield the two known U(N − 1)-invariant vector generalizations of both the nonlinear Schrödinger (NLS) equation and the complex modified Korteweg-de Vries (mKdV) equation, as well as U(N − 1)-invariant vector generalizations of the sine-Gordon (SG) equation found in recent symmetry-integrability classifications of hyperbolic vector equations. The curve flows themselves are described in explicit form by chiral wave maps, chiral variants of Schrödinger maps, and mKdV analogs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type

The bi-Hamiltonian structure of the two known vector generalizations of the mKdV hierarchy of soliton equations is derived in a geometrical fashion from flows of nonstretching curves in Riemannian symmetric spaces G/SO(N). These spaces are exhausted by the Lie groups G = SO(N + 1), SU(N). The derivation of the bi-Hamiltonian structure uses a parallel frame and connection along the curve, tied t...

متن کامل

Hamiltonian Curve Flows in Lie Groups G ⊂ U (n ) and Vector Nls, Mkdv, Sine-gordon Soliton Equations

A bi-Hamiltonian hierarchy of complex vector soliton equations is derived from geometric flows of non-stretching curves in the Lie groups G = SO(N + 1), SU(N) ⊂ U(N), generalizing previous work on integrable curve flows in Riemannian symmetric spaces G/SO(N). The derivation uses a parallel frame and connection along the curves, involving the Klein geometry of the group G. This is shown to yield...

متن کامل

A Combined Sine-gordon and Modified Korteweg{de Vries Hierarchy and Its Algebro-geometric Solutions

We derive a zero-curvature formalism for a combined sine-Gordon (sG) and modi-ed Korteweg{de Vries (mKdV) equation which yields a local sGmKdV hierarchy. In complete analogy to other completely integrable hierarchies of soliton equations, such as the KdV, AKNS, and Toda hierarchies, the sGmKdV hierarchy is recursively constructed by means of a fundamental polynomial formalism involving a spectr...

متن کامل

Applications of the Exp-function Method for the MkdV-Sine-Gordon and Boussinesq-double Sine-Gordon Equations

In this paper, the Exp-function method is used to obtain generalized travelling wave solutions with free parameters of the MKdV-sine-Gordon and Boussinesq-double sine-Gordon equations. It is shown that the Exp-function method, with the help of any symbolic computation packages, provides an effective mathematical tool for nonlinear evolution equations arising in mathematical physics.

متن کامل

Multiple Soliton Solutions for a Variety of Coupled Modified Korteweg--de Vries Equations

Recently, many nonlinear coupled evolution equations, such as the coupled Korteweg–de Vries (KdV) equation, the coupled Boussinesq equation, and the coupled mKdV equation, appear in scientific applications [1 – 13]. The coupled evolution equations attracted a considerable research work in the literature. The aims of these works have been the determination of soliton solutions and the proof of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007