Synthesis and characterization of Pt/CeOx systems for catalytic CO oxidation reaction

نویسنده

  • R. J. Wróbel
چکیده

Four different ceria supported catalyst were prepared by impregnation method with Pt(NO3)2 solution. The two supports are commercially available (MaTeck) and the other two were prepared by precipitation and microwave assisted hydrothermal method (MAH) respectively. The phase composition and average crystallite size of the catalysts were characterised with XRD technique. Finally the catalytic activity in CO oxidation reaction were determined in plug flow reactor in temperature range 300–900 K with 1 K resolution. The catalysts obtained in both precipitation and MAH methods exhibit catalytic activity at room temperature whereas catalysts obtained on MaTeck supports are not active at those conditions. In turn, catalysts based on MaTeck support are more active in temperature range 420–700 K. The different activities are attributed to difference in average crystallite sizes and in support morphology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ceria nanoformations in CO oxidation on Pt(111): Promotional effects and reversible redox behaviour

A well-defined CeOx/Pt(111) model catalytic system has been fabricated using the self-assembling of Ce adatoms on a Pt(111) surface with a subsequent oxidation of the nucleating Ce submonolayer (0.3 ML). The resulting system of the ‘‘inverse supported catalyst’’ type consists of CeOx nanoformations (2D islands of 5–15 nm size and 0.3 nm in height) more or less uniformly distributed over the Pt(...

متن کامل

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...

متن کامل

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...

متن کامل

Multi-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electro oxidation in alkaline media

Palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNTs) have been synthesized using a modified polyol reduction method and its performance in methanol oxidation reactions has evaluated. The morphology of palladium on MWCNTs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic performance of synthesized catalyst ...

متن کامل

Enhanced Catalytic Activity of Pt-NdFeO3 Nanoparticles Supported on Polyaniline-Chitosan Composite Towards Methanol Electro-Oxidation Reaction

In this work, NdFeO3 nanoparticles were synthesized through a simple co-precipitation method. The formation of NdFeO3 particles was verified by X-ray powder diffraction, infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy analysis. Polyaniline and chitosan were employed as proper support for production of metal nanoparticles. Novel Pt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011