Feature Selection: Near Set Approach

نویسندگان

  • James F. Peters
  • Sheela Ramanna
چکیده

The problem considered in this paper is the description of objects that are, in some sense, qualitatively near each other and the selection of features useful in classifying near objects. The term qualitatively near is used here to mean closeness of descriptions or distinctive characteristics of objects. The solution to this twofold problem is inspired by the work of Zdzis law Pawlak during the early 1980s on the classification of objects. In working toward a solution of the problem of the classification of perceptual objects, this article introduces a near set approach to feature selection. Consideration of the nearness of objects has recently led to the introduction of what are known as near sets, an optimist’s view of the approximation of sets of objects that are more or less near each other. Near set theory started with the introduction of collections of partitions (families of neighbourhoods), which provide a basis for a feature selection method based on the information content of the partitions of a set of sample objects. A byproduct of the proposed approach is a feature filtering method that eliminates features that are less useful in the classification of objects. This contribution of this article is the introduction of a near set approach to feature selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

Improvement of effort estimation accuracy in software projects using a feature selection approach

In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...

متن کامل

A New Framework for Distributed Multivariate Feature Selection

Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...

متن کامل

Enhancing Performance of Face Recognition System by Using near Set Approach for Selecting Facial Features

The application of Support Vector Machines (SVMs) in face recognition is investigated in this paper. SVM is a classification algorithm recently developed by V. Vapnik and his team. We illustrate the potential of SVMs on the Cambridge ORL face database, which consists of 400 images of 40 individuals, containing quite a high degree of variability in expression, pose, and facial details. Our face ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007