Vector Fields Tangent to Foliations

نویسندگان

  • L. F. MARTINS
  • F. TARI
  • L. F. Martins
چکیده

We investigate in this paper the topological stability of pairs (ω,X), where ω is a germ of an integrable 1-form and X is a germ of a vector field tangent to the foliation determined by ω.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Riemannian foliations on the tangent bundle via SODE structure

The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...

متن کامل

A Hölder continuous vector field tangent to many foliations

We construct an example of a Hölder continuous vector field on the plane which is tangent to all foliations in a continuous family of pairwise distinct C foliations. Given any 1 ≤ r < ∞, the construction can be done in such a way that each leaf of each foliation is the graph of a Cr function from R to R. We also show the existence of a continuous vector field X on R and two foliations F and G o...

متن کامل

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

M ar 2 00 5 On the intrinsic geometry of a unit vector field ∗

We study the geometrical properties of a unit vector field on a Riemann-ian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature K, we give a description of the totally geodesic unit vector fields for K = 0 and K = 1 and prove a non-existence result for K = 0, 1. We also found a family ξω...

متن کامل

4 M ar 2 00 5 On the intrinsic geometry of a unit vector field ∗

We study the geometrical properties of a unit vector field on a Riemann-ian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature K, we give a description of the totally geodesic unit vector fields for K = 0 and K = 1 and prove a non-existence result for K = 0, 1. We also found a family ξω...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006