Parameterising the Complexity of Planning by the Number of Paths in the Domain-transition Graphs
نویسنده
چکیده
We apply the theory of parameterised complexity to planning, using the concept of fixed-parameter tractability (fpt) which is more relaxed than the usual tractability concept. The parameter we focus on is the maximal number of paths in the domain-transition graphs, and we show that for this parameter, optimal planning is fpt for planning instances with polytree causal graphs and acyclic domain-transition graphs. If this parameter is combined with the additional parameters of domain size for the variables and the treewidth of the causal graph, then planning is fpt also for instances with arbitrary causal graphs. Furthermore, all these parameters are fpt to test in advance. These results also imply that delete-relaxed planning is fpt, even in its recent generalisation to non-binary variables.
منابع مشابه
Some Fixed Parameter Tractability Results for Planning with Non-Acyclic Domain-Transition Graphs
Bäckström studied the parameterised complexity of planning when the domain-transition graphs (DTGs) are acyclic. He used the parameters d (domain size), k (number of paths in the DTGs) and w (treewidth of the causal graph), and showed that planning is fixed-parameter tractable (fpt) in these parameters, and fpt in only parameter k if the causal graph is a polytree. We continue this work by cons...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملIncidence dominating numbers of graphs
In this paper, the concept of incidence domination number of graphs is introduced and the incidence dominating set and the incidence domination number of some particular graphs such as paths, cycles, wheels, complete graphs and stars are studied.
متن کاملOptimizing Cost Function in Imperialist Competitive Algorithm for Path Coverage Problem in Software Testing
Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. Automatic test data generation that can cover all the paths of software is known as a major cha...
متن کاملNew results on upper domatic number of graphs
For a graph $G = (V, E)$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_k}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i$ dominates $V_j$ or $V_j$ dominates $V_i$ or both for every $V_i, V_j in pi$, whenever $i neq j$. The textit{upper domatic number} $D(G)$ is the maximum order of an upper domatic partition. We study the properties of upper domatic number and propose an up...
متن کامل