Some diophantine quadruples in the ring Z [ √ − 2 ]

نویسندگان

  • Fadwa S. Abu Muriefah
  • Amal al-Rashed
چکیده

A complex diophantine quadruple with the property D (z), where z ∈ Z[√−2], is a subset of Z[√−2] of four elements such that the product of its any two distinct elements increased by z is a perfect square in Z[ √−2]. In the present paper we prove that if b is an odd integer, then there does not exist a diophantine quadruple with the property D(a + b √−2). For z = a + b√−2, where b is even, we prove that there exist at least two distinct complex diophantine quadruples if a and b satisfy some congruence conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine quadruples in Z [ √ − 2 ]

In this paper, we study the existence of Diophantine quadruples with the property D(z) in the ring Z[ √−2 ]. We find several new polynomial formulas for Diophantine quadruples with the property D(a+ b √−2 ), for integers a and b satisfying certain congruence conditions. These formulas, together with previous results on this subject by Abu Muriefah, Al-Rashed and Franušić, allow us to almost com...

متن کامل

On the Exceptional Set in the Problem of Diophantus and Davenport

The Greek mathematician Diophantus of Alexandria noted that the numbers x, x + 2, 4x + 4 and 9x + 6, where x = 1 16 , have the following property: the product of any two of them increased by 1 is a square of a rational number (see [4]). Fermat first found a set of four positive integers with the above property, and it was {1, 3, 8, 120}. Later, Davenport and Baker [3] showed that if d is a posi...

متن کامل

Some Diophantine Triples and Quadruples for Quadratic Polynomials

In this paper, we give some new examples of polynomial D(n)triples and quadruples, i.e. sets of polynomials with integer coefficients, such that the product of any two of them plus a polynomial n ∈ Z[X] is a square of a polynomial with integer coefficients. The examples illustrate various theoretical properties and constructions for a quadratic polynomial n which appeared in recent papers. One ...

متن کامل

Adjugates of Diophantine Quadruples

Philip Gibbs Diophantine m-tuples with property D(n), for n an integer, are sets of m positive integers such that the product of any two of them plus n is a square. Triples and quadruples with this property can be classed as regular or irregular according to whether they satisfy certain polynomial identities. Given any such m-tuple, a symmetric integer matrix can be formed with the elements of ...

متن کامل

Diophantine quadruples and Fibonacci numbers

A Diophantine m-tuple is a set of m positive integers with the property that product of any two of its distinct elements is one less then a square. In this survey we describe some problems and results concerning Diophantine m-tuples and their connections with Fibonacci numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004