Mining Transformed Data Sets

نویسندگان

  • Alex Burns
  • Andrew Kusiak
  • Terry Letsche
چکیده

This research presents a method to select an ideal feature subset of original and transformed features. The feature selection method utilizes a genetic wrapper scheme that employs classification accuracy as its fitness function. The feature subset generated by the proposed approach usually contains features produced by different transformation schemes. The selection of transformed features provides new insight on the interactions and behaviors of the features. This method is especially effective with temporal data and provides knowledge about the dynamic nature of the process. This method was successfully applied to optimize efficiency of a circulating fluidized bed boiler at a local power plant. The computational results from the power plant demonstrate an improvement in classification accuracy, reduction in the number of rules, and decrease in computational time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

A Component-Based Data Management and Knowledge Discovery Framework for Aviation Studies

Organizations are beginning to apply data mining and knowledge discovery techniques to their corporate data sets, thereby enabling the identification of trends and the discovery of inductive knowledge. Since traditional transaction databases are not optimized for analytical processing, they must be transformed. This article proposes the use of modular components to decrease the overall amount o...

متن کامل

Experience Report: A Component-Based Data Management and Knowledge Discovery Framework for Aviation Studies

AbstRAct Organizations are beginning to apply data mining and knowledge discovery techniques to their corporate data sets, thereby enabling the identification of trends and the discovery of inductive knowledge. Many times, traditional transactional databases are not optimized for analytical processing and must be transformed. This article proposes the use of modular components to decrease the o...

متن کامل

On the reduction of the ordinary kriging smoothing effect

A simple but novel and applicable approach is proposed to solve the problem of smoothing effect of ordinary kriging estimate which is widely used in mining and earth sciences. It is based on transformation equation in which Z scores are derived from ordinary kriging estimates and then rescaled by the standard deviation of sample data and the sample mean is added to the result. It bears the grea...

متن کامل

Utility Independent Privacy Preserving Data Mining - Horizontally Partitioned Data

Micro data is a valuable source of information for research. However, publishing data about individuals for research purposes, without revealing sensitive information, is an important problem. The main objective of privacy preserving data mining algorithms is to obtain accurate results/rules by analyzing the maximum possible amount of data without unintended information disclosure. Data sets fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004