Constructing Shared-state Hidden Marko Approach

نویسندگان

  • Shinji Watanabe
  • Yasuhiro Minami
  • Naonori Ueda
چکیده

In this paper, we propose a method for constructing sharedstate triphone HMMs (SST-HMMs) within a practical Bayesian framework. In our method, Bayesian model selection criterion is derived for SST-HMM based on the Variational Bayesian approach. The appropriate phonetic decision tree structure of SST-HMM is found by using the criterion according to a given data set. This criterion, unlike the conventional MDL criterion, is applicable even in the case of insufficient amounts of data. We conduct two experiments on speaker independent word recognition in order to prove the effectiveness of the proposed method. The first experiment demonstrates that the Bayesian approach is valid for determining the tree structure. The second experiment demonstrates that the Bayesian criterion can design SST-HMMs with higher recognition performance than the MDL criterion when dealing with small amounts of data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection of Shared-State Hidden Markov Model Structure Using Bayesian Criterion

A Shared-State Hidden Markov Model (SS-HMM) has been widely used as an acoustic model in speech recognition. In this paper, we propose a method for constructing SS-HMMs within a practical Bayesian framework. Our method derives the Bayesian model selection criterion for the SS-HMM based on the variational Bayesian approach. The appropriate phonetic decision tree structure of the SS-HMM is found ...

متن کامل

Constructing shared-state hidden Markov models based on a Bayesian approach

In this paper, we propose a method for constructing sharedstate triphone HMMs (SST-HMMs) within a practical Bayesian framework. In our method, Bayesian model selection criterion is derived for SST-HMM based on the Variational Bayesian approach. The appropriate phonetic decision tree structure of SST-HMM is found by using the criterion according to a given data set. This criterion, unlike the co...

متن کامل

Symmetric extensions of quantum States and local hidden variable theories.

While all bipartite pure entangled states violate some Bell inequality, the relationship between entanglement and nonlocality for mixed quantum states is not well understood. We introduce a simple and efficient algorithmic approach for the problem of constructing local hidden variable theories for quantum states. The method is based on constructing a so-called symmetric quasiextension of the qu...

متن کامل

Condensed Storage of Multi-Set Sequences

Tools for state space exploration, or reachability analysers, work by incrementally constructing a set of reachable states. The applicability of these tools is limited by the vast state space of real systems. One way to attack this problem are different reduction methods— another approach is to come up with techniques for representing the set of reachable states in a compact way. The state—or m...

متن کامل

Memory space reduction for hidden Markov models in low-resource speech recognition systems

Low-cost recognition systems based on hidden Markov models (HMM) for mobile speech recognizers (mobile phones, PDAs) have a limited quantity of memory and processing power. Furthermore, the resources have to be shared between several applications. In this paper memory efficient HMMs were investigated for low-cost recognition platforms. The feature parameter tying HMM and subspace distribution c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002