Basis Identification from Random Sparse Samples

نویسندگان

  • Rémi Gribonval
  • Karin Schnass
چکیده

This article treats the problem of learning a dictionary providing sparse representations for a given signal class, via l1 minimisation. The problem is to identify a dictionary Φ from a set of training samples Y knowing that Y = ΦX for some coefficient matrix X. Using a characterisation of coefficient matrices X that allow to recover any basis as a local minimum of an l1 minimisation problem, it is shown that certain types of sparse random coefficient matrices will ensure local identifiability of the basis with high probability. The necessary number of training samples grows up to a logarithmic factor linearly with the signal dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Heterogeneous Functions from Sparse and Non-Uniform Sample

A boosting-based method for centers placement in radial basis function networks (RBFN) is proposed. Also, the influence of several methods for drawing random samples on the accuracy of RBFN is examined. The new method is compared to trivial, linear and non-linear regressors including the multilayer Perceptron and alternative RBFN learning algorithms and its advantages are demonstrated for learn...

متن کامل

Limits of Deterministic Compressed Sensing Considering Arbitrary Orthonormal Basis for Sparsity

It is previously shown that proper random linear samples of a finite discrete signal (vector) which has a sparse representation in an orthonormal basis make it possible (with probability 1) to recover the original signal. Moreover, the choice of the linear samples does not depend on the sparsity domain. In this paper, we will show that the replacement of random linear samples with deterministic...

متن کامل

Dictionary Identification - Sparse Matrix-Factorisation via ℓ1-Minimisation

This article treats the problem of learning a dictionary providing sparse representations for a given signal class, via l1-minimisation. The problem can also be seen as factorising a d×N matrix Y = (y1 . . . yN ), yn ∈ R of training signals into a d×K dictionary matrix Φ and a K×N coefficient matrix X = (x1 . . . xN ), xn ∈ R , which is sparse. The exact question studied here is when a dictiona...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

An Approach to Sparse Continuous-time System Identification from Unevenly Sampled Data

In this work, we address the problem of identifying sparse continuous-time dynamical systems when the spacing between successive samples (the sampling period) is not constant over time. The proposed approach combines the leave-one-sample-out cross-validation error trick from machine learning with an iterative subset growth method to select the subset of basis functions that governs the dynamics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009