Electrophilic PPARγ Ligands Attenuate IL-1β and Silica-Induced Inflammatory Mediator Production in Human Lung Fibroblasts via a PPARγ-Independent Mechanism
نویسندگان
چکیده
Acute and chronic lung inflammation is associated with numerous important disease pathologies including asthma, chronic obstructive pulmonary disease and silicosis. Lung fibroblasts are a novel and important target of anti-inflammatory therapy, as they orchestrate, respond to, and amplify inflammatory cascades and are the key cell in the pathogenesis of lung fibrosis. Peroxisome proliferator-activated receptor gamma (PPARγ) ligands are small molecules that induce anti-inflammatory responses in a variety of tissues. Here, we report for the first time that PPARγ ligands have potent anti-inflammatory effects on human lung fibroblasts. 2-cyano-3, 12-dioxoolean-1, 9-dien-28-oic acid (CDDO) and 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) inhibit production of the inflammatory mediators interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), COX-2, and prostaglandin (PG)E(2) in primary human lung fibroblasts stimulated with either IL-1β or silica. The anti-inflammatory properties of these molecules are not blocked by the PPARγ antagonist GW9662 and thus are largely PPARγ independent. However, they are dependent on the presence of an electrophilic carbon. CDDO and 15d-PGJ(2), but not rosiglitazone, inhibited NF-κB activity. These results demonstrate that CDDO and 15d-PGJ(2) are potent attenuators of proinflammatory responses in lung fibroblasts and suggest that these molecules should be explored as the basis for novel, targeted anti-inflammatory therapies in the lung and other organs.
منابع مشابه
25-Hydroxycholesterol-3-sulfate attenuates inflammatory response via PPARγ signaling in human THP-1 macrophages.
The nuclear receptor peroxisome proliferator-activated receptors (PPARs) are important in regulating lipid metabolism and inflammatory responses in macrophages. Activation of PPARγ represses key inflammatory response gene expressions. Recently, we identified a new cholesterol metabolite, 25-hydroxycholesterol-3-sulfate (25HC3S), as a potent regulatory molecule of lipid metabolism. In this paper...
متن کاملOmega-3 fatty acids attenuate dendritic cell function via NF-κB independent of PPARγ.
Long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) have been shown to modulate the immune response and have therapeutic effects in inflammatory disorders. PUFA are also peroxisome proliferators-activator receptor-gamma (PPARγ) ligands; a family of ligand-activated transcription factors, which when activated antagonise the pro-inflammatory capability of nuclear factor κB (NF-κB). PPARγ plays ...
متن کاملNitrated Fatty Acids Reverse Cigarette Smoke-Induced Alveolar Macrophage Activation and Inhibit Protease Activity via Electrophilic S-Alkylation.
Nitrated fatty acids (NFAs), endogenous products of nonenzymatic reactions of NO-derived reactive nitrogen species with unsaturated fatty acids, exhibit substantial anti-inflammatory activities. They are both reversible electrophiles and peroxisome proliferator-activated receptor γ (PPARγ) agonists, but the physiological implications of their electrophilic activity are poorly understood. We tes...
متن کاملResolvin D1 attenuates inflammation in lipopolysaccharide-induced acute lung injury through a process involving the PPARγ/NF-κB pathway
BACKGROUND Docosahexaenoic acid (DHA) and DHA-derived lipid mediators have recently been shown to possess anti-inflammatory and pro-resolving properties. In fact, DHA can down-regulate lipolysaccharide (LPS)-induced activation of NF-κB via a PPARγ-dependent pathway. We sought to investigate the effects of the novel DHA-derived mediator resolvin D1 (RvD1) on LPS-induced acute lung injury and to ...
متن کاملFenofibrate, a peroxisome proliferator-activated receptor α-agonist, blocks lipopolysaccharide-induced inflammatory pathways in mouse liver
BACKGROUNDS/AIMS During the acute phase response, cytokines induce marked alterations in lipid metabolism including an increase in serum triglyceride levels and a decrease in hepatic fatty acid oxidation, in bile acid synthesis, and in high-density lipoprotein levels. METHODS Peroxisome proliferator-activated receptors (PPARs: PPARα, β/δ, and γ) regulate fatty acid metabolism, glucose homeost...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011