An MDL Approach to Efficiently Discover Communities in Bipartite Network
نویسندگان
چکیده
Bipartite network is a branch of complex network. It is widely used in many applications such as social network analysis, collaborative filtering and information retrieval. Partitioning a bipartite network into smaller modules helps to get insight of the structure of the bipartite network. The main contributions of this paper include: (1) proposing an MDL 21 criterion for identifying a good partition of a bipartite network. (2) presenting a greedy algorithm based on combination theory, named as MDL-greedy, to approach the optimal partition of a bipartite network. The greedy algorithm automatically searches for the number of partitions, and requires no user intervention. (3) conducting experiments on synthetic datasets and the southern women dataset. The results show that our method generates higher quality results than the state-of-art methods Cross-Association and Information-theoretic co-clustering. Experiment results also show the good scalability of the proposed algorithm. The highest improvement could be up to about 14% for the precision, 40% for the ratio and 70% for the running time.
منابع مشابه
An MDL Approach to Efficiently Discover Communities in Bipartite Network1
Bipartite network is a branch of complex network. It is widely used in many applications such as social network analysis, collaborative filtering and information retrieval. Partitioning a bipartite network into smaller modules helps to get insight of the structure of the bipartite network. The main contributions of this paper include: (1) proposing an MDL 21 criterion for identifying a good par...
متن کاملDesigning an Ontology for Knowledge Discovery in Iran’s Vaccine
Ontology is a requirement engineering product and the key to knowledge discovery. It includes the terminology to describe a set of facts, assumptions, and relations with which the detailed meanings of vocabularies among communities can be determined. This is a qualitative content analysis research. This study has made use of ontology for the first time to discover the knowledge of vaccine in Ir...
متن کاملNumeric Law Discovery using Neural Networks
This paper proposes a new connectionist approach to numeric law discovery; i.e., neural networks (law-candidates) are trained by using a newly invented second-order learning algorithm based on a quasi-Newton method, called BPQ, and the MDL criterion selects the most suitable from law-candidates. The main advantage of our method over previous work of symbolic or connectionist approach is that it...
متن کاملOverlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملMathematical Model and Algorithm for Link Community Detection in Bipartite Networks
In the past ten years, community detection in complex networks has attracted more and more attention of researchers. Communities often correspond to functional subunits in the complex systems. In complex network, a node community can be defined as a subgraph induced by a set of nodes, while a link community is a subgraph induced by a set of links. Although most researches pay more attention to ...
متن کامل