Characterizations of Regular Almost Periodicity in Compact Minimal Abelian Flows
نویسندگان
چکیده
Regular almost periodicity in compact minimal abelian flows was characterized for the case of discrete acting group by W. Gottschalk and G. Hedlund and for the case of 0-dimensional phase space by W. Gottschalk a few decades ago. In 1995 J. Egawa gave characterizations for the case when the acting group is R. We extend Egawa’s results to the case of an arbitrary abelian acting group and a not necessarily metrizable phase space. We then show how our statements imply previously known characterizations in each of the three special cases and give various other applications (characterization of regularly almost periodic functions on arbitrary abelian topological groups, classification of uniformly regularly almost periodic compact minimal Zand R-flows, conditions equivalent with uniform regular almost periodicity, etc.).
منابع مشابه
On rarely generalized regular fuzzy continuous functions in fuzzy topological spaces
In this paper, we introduce the concept of rarely generalized regular fuzzy continuous functions in the sense of A.P. Sostak's and Ramadan is introduced. Some interesting properties and characterizations of them are investigated. Also, some applications to fuzzy compact spaces are established.
متن کاملVarious topological forms of Von Neumann regularity in Banach algebras
We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...
متن کاملOn continuous cohomology of locally compact Abelian groups and bilinear maps
Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...
متن کاملPure Point Spectrum for Measure Dynamical Systems on Locally Compact Abelian Groups
We show equivalence of pure point diffraction and pure point dynamical spectrum for measurable dynamical systems built from locally finite measures on locally compact Abelian groups. This generalizes all earlier results of this type. Our approach is based on a study of almost periodicity in a Hilbert space. It allows us to set up a perturbation theory for arbitrary equivariant measurable pertur...
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کامل