The Deep Physics Hidden within the Field Expressions of the Radiation Fields of Lightning Return Strokes

نویسندگان

  • Vernon Cooray
  • Gerald Cooray
  • Farhad Rachidi
چکیده

Based on the electromagnetic fields generated by a current pulse propagating from one point in space to another, a scenario that is frequently used to simulate return strokes in lightning flashes, it is shown that there is a deep physical connection between the electromagnetic energy dissipated by the system, the time over which this energy is dissipated and the charge associated with the current. For a given current pulse, the product of the energy dissipated and the time over which this energy is dissipated, defined as action in this paper, depends on the length of the channel, or the path, through which the current pulse is propagating. As the length of the channel varies, the action plotted against the length of the channel exhibits a maximum value. The location of the maximum value depends on the ratio of the length of the channel to the characteristic length of the current pulse. The latter is defined as the product of the duration of the current pulse and the speed of propagation of the current pulse. The magnitude of this maximum depends on the charge associated with the current pulse. The results show that when the charge associated with the current pulse approaches the electronic charge, the value of this maximum reaches a value close to h/8π where h is the Plank constant. From this result, one can deduce that the time-energy uncertainty principle is the reason for the fact that the smallest charge that can be detected from the electromagnetic radiation is equal to the electronic charge. Since any system that generates electromagnetic radiation can be represented by a current pulse propagating from one point in space to another, the result is deemed valid for electromagnetic radiation fields in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electromagnetic Field Due to Lightning Strikes to Mountainous Ground

The produced electric and magnetic fields due to lightning strikes to mountainous ground are determined in this paper. For the sake of simplicity a cone-shaped ground with finite conductivity is assumed to represent a natural nonflat ground. By this assumption, we deal with an axillary symmetrical structure so we use the cylindrical 2D-FDTD to save the simulation memory and time, dramatically. ...

متن کامل

Expressions for far electric fields produced at an arbitrary altitude by lightning return strokes

[1] Electromagnetic fields produced at high altitudes by return strokes in cloud-to-ground lightning are needed in studies of transient luminous events in the mesosphere. Such calculations require the use of a lightning return stroke model. Two of the widely used return stroke models are (1) the modified transmission line model with exponential decay (MTLE) of current with height and (2) the mo...

متن کامل

Determination of lightning currents from far electromagnetic fields: Effect of a strike object

We discuss in this paper the influence of the presence of an elevated strike object on the peak of the lightning return stroke current determined from remote field measurements. We develop analytical expressions relating the lightning return stroke channel-base current and the far electromagnetic field for different specific cases, namely, (1) ground-initiated return strokes (classical transmis...

متن کامل

Calculation of Lightning Electromagnetic Fields: a Review

Lightning return stroke is a self-propagating discharge with path length measured in kilometres, which extends at high speeds, sometimes approaching a significant fraction of the speed of light. Usually one is interested in the electromagnetic fields produced by lightning several tens of meters to some kilometres away. In order to calculate fields from lightning, it is modelled as a linear trav...

متن کامل

Characterization of Lightning Electromagnetic

Characteristics of measured electric and magnetic fields generated by leaders and return strokes in lightning cloud-to-ground discharges are reviewed. The very close (within tens to hundreds of meters) lightning electromagnetic environment is discussed. Typical field waveforms at distances ranging from 10 m to 200 km are shown. Modeling of lightning return strokes as sources of electromagnetic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016