Magnetic Flows on Homogeneous Spaces∗

نویسنده

  • Alexey V. Bolsinov
چکیده

We consider magnetic geodesic flows of the normal metrics on a class of homogeneous spaces, in particular (co)adjoint orbits of compact Lie groups. We give the proof of the non-commutative integrability of flows and show, in addition, for the case of (co)adjoint orbits, the usual Liouville integrability by means of analytic integrals. We also consider the potential systems on adjoint orbits, which are generalizations of the magnetic spherical pendulum. The complete integrability of such system is proved for an arbitrary adjoint orbit of a compact semisimple Lie group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flows on Homogeneous Spaces and Diophantine Approximation on Manifolds

We present a new approach to metric Diophantine approximation on manifolds based on the correspondence between approximation properties of numbers and orbit properties of certain flows on homogeneous spaces. This approach yields a new proof of a conjecture of Mahler, originally settled by V. G. Sprindžuk in 1964. We also prove several related hypotheses of Baker and Sprindžuk formulated in 1970...

متن کامل

O ct 1 99 8 FLOWS ON HOMOGENEOUS SPACES AND DIOPHANTINE APPROXIMATION ON MANIFOLDS

We present a new approach to metric Diophantine approximation on manifolds based on the correspondence between approximation properties of numbers and orbit properties of certain flows on homogeneous spaces. This approach yields a new proof of a conjecture of Mahler, originally settled by V. G. Sprindžuk in 1964. We also prove several related hypotheses of Baker and Sprindžuk formulated in 1970...

متن کامل

Dani’s work on dynamical systems on homogeneous spaces

We describe some of S.G.Dani’s many contributions to the theory and applications of dynamical systems on homogeneous spaces, with emphasis on unipotent flows. S.G.Dani has written over 100 papers. They explore a variety of topics, including: • flows on homogeneous spaces – unipotent dynamics – applications to Number Theory – divergent orbits – bounded orbits and Schmidt’s game – topological orb...

متن کامل

Hereditarily Homogeneous Generalized Topological Spaces

In this paper we study hereditarily homogeneous generalized topological spaces. Various properties of hereditarily homogeneous generalized topological spaces are discussed. We prove that a generalized topological space is hereditarily homogeneous if and only if every transposition of $X$ is a $mu$-homeomorphism on $X$.

متن کامل

Diagonalizable flows on locally homogeneous spaces and number theory

We discuss dynamical properties of actions of diagonalizable groups on locally homogeneous spaces, particularly their invariant measures, and present some number theoretic and spectral applications. Entropy plays a key role in the study of theses invariant measures and in the applications. Mathematics Subject Classification (2000). 37D40, 37A45, 11J13, 81Q50.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007