KCa3.1 mediates activation of fibroblasts in diabetic renal interstitial fibrosis

نویسندگان

  • Chunling Huang
  • Sylvie Shen
  • Qing Ma
  • Anthony Gill
  • Carol A. Pollock
  • Xin-Ming Chen
چکیده

BACKGROUND Fibroblast activation plays a critical role in diabetic nephropathy (DN). The Ca2+-activated K+ channel KCa3.1 mediates cellular proliferation of many cell types including fibroblasts. KCa3.1 has been reported to be a potential molecular target for pharmacological intervention in a diverse array of clinical conditions. However, the role of KCa3.1 in the activation of myofibroblasts in DN is unknown. These studies assessed the effect of KCa3.1 blockade on renal injury in experimental diabetes. METHODS As TGF-β1 plays a central role in the activation of fibroblasts to myofibroblasts in renal interstitial fibrosis, human primary renal interstitial fibroblasts were incubated with TGF-β1+/- the selective inhibitor of KCa3.1, TRAM34, for 48 h. Two streptozotocin-induced diabetic mouse models were used in this study: wild-type KCa3.1+/+ and KCa3.1-/- mice, and secondly eNOS-/- mice treated with or without a selective inhibitor of KCa3.1 (TRAM34). Then, markers of fibroblast activation and fibrosis were determined. RESULTS Blockade of KCa3.1 inhibited the upregulation of type I collagen, fibronectin, α-smooth muscle actin, vimentin and fibroblast-specific protein-1 in renal fibroblasts exposed to TGF-β1 and in kidneys from diabetic mice. TRAM34 reduced TGF-β1-induced phosphorylation of Smad2/3 and ERK1/2 but not P38 and JNK MAPK in interstitial fibroblasts. CONCLUSIONS These results suggest that blockade of KCa3.1 attenuates diabetic renal interstitial fibrogenesis through inhibiting activation of fibroblasts and phosphorylation of Smad2/3 and ERK1/2. Therefore, therapeutic interventions to prevent or ameliorate DN through targeted inhibition of KCa3.1 deserve further consideration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blockade of KCa3.1 Ameliorates Renal Fibrosis Through the TGF-β1/Smad Pathway in Diabetic Mice

The Ca(2+)-activated K(+) channel KCa3.1 mediates cellular signaling processes associated with dysfunction of vasculature. However, the role of KCa3.1 in diabetic nephropathy is unknown. We sought to assess whether KCa3.1 mediates the development of renal fibrosis in two animal models of diabetic nephropathy. Wild-type and KCa3.1(-/-) mice, and secondly eNOS(-/-) mice, had diabetes induced with...

متن کامل

KCa3.1 mediates dysfunction of tubular autophagy in diabetic kidneys via PI3k/Akt/mTOR signaling pathways

Autophagy is emerging as an important pathway in many diseases including diabetic nephropathy. It is acknowledged that oxidative stress plays a critical role in autophagy dysfunction and diabetic nephropathy, and KCa3.1 blockade ameliorates diabetic renal fibrosis through inhibiting TGF-β1 signaling pathway. To identify the role of KCa3.1 in dysfunctional tubular autophagy in diabetic nephropat...

متن کامل

Metformin prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction.

Unilateral ureteral obstruction causes important tubulo-interstitial fibrosis in the kidney. Metformin reduces fibrosis in mice with diabetic nephropathy. We examined the effects of metformin in a mouse model of unilateral ureteral obstruction (UUO). Expression of inflammation and fibrosis markers was studied by immunohistochemistry, immunoblot and quantitative real-time polymerase chain reacti...

متن کامل

Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy.

Activation of renal interstitial fibroblasts is critically involved in the development of tubulointerstitial fibrosis in chronic kidney diseases. In this study, we investigated the effect of trichostatin A (TSA), a specific histone deacetylase (HDAC) inhibitor, on the activation of renal interstitial fibroblasts in a rat renal interstitial fibroblast line (NRK-49F) and the development of renal ...

متن کامل

Secretion of collagen type IV by human renal fibroblasts is increased by high glucose via a TGF-beta-independent pathway.

BACKGROUND Tubulointerstitial fibrosis is an important component of diabetic nephropathy, which is characterized by increased expression of interstitial extracellular matrix components and aberrant expression of the basement membrane component collagen type IV. The present study examined the effect of high ambient glucose and transforming growth factor-beta1 (TGF-beta1) on collagen secretion by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2014