Overexpression of brain-derived neurotrophic factor enhances sensory innervation and selectively increases neuron number.
نویسندگان
چکیده
Target-derived neurotrophin growth factors have significant effects on the development and maintenance of the mammalian somatosensory system. Studies of transgenic mice that overexpress neurotrophins NGF and neurotrophin 3 (NT-3) at high levels in skin have shown increased sensory neuron number and enhanced innervation of specific sensory ending types. The effects of two other members of this family, BDNF and NT-4, on sensory neuron development are less clear. This study examined the role of brain-derived neurotrophic factor (BDNF) using transgenic mice that overexpress BDNF in epithelial target tissues of sensory neurons. BDNF transgenic mice had an increase in peripheral innervation density and showed selective effects on neuron survival. Neuron number in trigeminal ganglia, DRG, and SCG were unchanged, although a 38% increase in neurons comprising the placode-derived nodose-petrosal complex occurred. BDNF transgenic skin showed notable enhancement of innervation to hair follicles as detected by PGP9.5 immunolabeling. In nonhairy plantar skin, Meissner corpuscle sensory endings were larger, and the number of Merkel cells with associated innervation was increased. In trigeminal ganglia, neurons expressing trkB receptor were increased threefold, whereas trkA-positive neurons doubled. Analysis of trkB by Northern, reverse transcription-PCR, and Western assays indicated a modest increase in the expression of the T1 truncated receptor and preferential distribution to the periphery. These data indicate that skin-derived BDNF does not enhance survival of cutaneous sensory neurons, although it does promote neurite innervation of specific sites and sensory end organs of the skin.
منابع مشابه
Overexpression of neurotrophin 4 in skin enhances myelinated sensory endings but does not influence sensory neuron number.
The growth factors neurotrophin 4 (NT4) and brain-derived neurotrophic factor (BDNF) are expressed in the developing skin, activate the trkB tyrosine kinase receptor, and influence the development and survival of specific types of sensory afferents. Whether each factor is capable of regulating the same or overlapping populations of cutaneous afferents during development is unknown. A previous s...
متن کاملCutaneous overexpression of NT-3 increases sensory and sympathetic neuron number and enhances touch dome and hair follicle innervation
Target-derived influences of nerve growth factor on neuronal survival and differentiation are well documented, though effects of other neurotrophins are less clear. To examine the influence of NT-3 neurotrophin overexpression in a target tissue of sensory and sympathetic neurons, transgenic mice were isolated that overexpress NT-3 in the epidermis. Overexpression of NT-3 led to a 42% increase i...
متن کاملReduced intestinal brain-derived neurotrophic factor increases vagal sensory innervation of the intestine and enhances satiation.
Brain-derived neurotrophic factor (BDNF) is produced by developing and mature gastrointestinal (GI) tissues that are heavily innervated by autonomic neurons and may therefore control their development or function. To begin investigating this hypothesis, we compared the morphology, distribution, and density of intraganglionic laminar endings (IGLEs), the predominant vagal GI afferent, in mice wi...
متن کاملEpithelial-derived brain-derived neurotrophic factor is required for gustatory neuron targeting during a critical developmental period.
Brain-derived neurotrophic factor (BDNF) is expressed in epithelial targets of gustatory neurons (i.e., fungiform papillae) before their innervation, and BDNF overexpression in nontaste regions of the tongue misdirects gustatory axons to these sites, suggesting that BDNF is necessary for gustatory axons to locate and innervate their correct targets during development. To test this hypothesis, w...
متن کاملNeurotrophins in the ear: their roles in sensory neuron survival and fiber guidance.
We review the history of neurotrophins in the ear and the current understanding of the function of neurotrophins in ear innervation, development and maintenance. Only two neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), and their receptors, tyrosine kinase B (TrkB) and TrkC, appear to provide trophic support for inner ear sensory neuron afferents. Mice lacking ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 14 شماره
صفحات -
تاریخ انتشار 1999