Abnormal Event Detection in Videos Using Spatiotemporal Autoencoder

نویسندگان

  • Yong Shean Chong
  • Yong Haur Tay
چکیده

We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Detection of Abnormal Events Using Incremental Coding Length

We present an unsupervised approach for abnormal event detection in videos. We propose, given a dictionary of features learned from local spatiotemporal cuboids using the sparse coding objective, the abnormality of an event depends jointly on two factors: the frequency of each feature in reconstructing all events (or, rarity of a feature) and the strength by which it is used in reconstructing t...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Autoencoder with recurrent neural networks for video forgery detection

Video forgery detection is becoming an important issue in recent years, because modern editing software provide powerful and easy-to-use tools to manipulate videos. In this paper we propose to perform detection by means of deep learning, with an architecture based on autoencoders and recurrent neural networks. A training phase on a few pristine frames allows the autoencoder to learn an intrinsi...

متن کامل

Detection and Recognition of Abnormal Running Behavior in Surveillance Video

Abnormal running behavior frequently happen in robbery cases and other criminal cases. In order to identity these abnormal behaviors a method to detect and recognize abnormal running behavior, is presented based on spatiotemporal parameters. Meanwhile, to obtain more accurate spatiotemporal parameters and improve the real-time performance of the algorithm, a multitarget tracking algorithm, base...

متن کامل

Abnormal Event Detection Based on Saliency Information

Abnormal event detection is a challenging task in video analysis. In this paper, we propose a new abnormal event detection algorithm for surveillance videos. It is well accepted that human eyes are extremely sensitive to abnormal events and they can quickly pay attention to the locations of these abnormal events in visual scenes. Thus, the characteristics of the Human Visual System (HVS) can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017