Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana.
نویسندگان
چکیده
An active miniature inverted repeat transposable element (MITE), mPing, was discovered by computer-assisted analysis of rice genome sequence. The mPing element is mobile in rice cell culture and in a few rice strains where it has been amplified to >1,000 copies during recent domestication. However, determination of the transposase source and characterization of the mechanism of transposition have been hampered by the high copy number of mPing and the presence of several candidate autonomous elements in the rice genome. Here, we report that mPing is active in Arabidopsis thaliana, where its transposition is catalyzed by three sources of transposase from rice: the autonomous Ping and Pong elements and by a cDNA derived from a Ping transcript. In addition to transposase, the product of a second element-encoded ORF of unknown function is also required for mPing transposition. Excision of mPing in A. thaliana is usually precise, and transposed copies usually insert into unlinked sites in the genome that are preferentially in or near genes. As such, this will be a valuable assay system for the dissection of MITE transposition and a potentially powerful tagging system for gene discovery in eukaryotes.
منابع مشابه
The rice miniature inverted repeat transposable element mPing is an effective insertional mutagen in soybean.
Insertional mutagenesis of legume genomes such as soybean (Glycine max) should aid in identifying genes responsible for key traits such as nitrogen fixation and seed quality. The relatively low throughput of soybean transformation necessitates the use of a transposon-tagging strategy where a single transformation event will produce many mutations over a number of generations. However, existing ...
متن کاملThe proteins encoded by the pogo-like Lemi1 element bind the TIRs and subterminal repeated motifs of the Arabidopsis Emigrant MITE. Consequences for the transposition mechanism of MITEs
MITEs (miniature inverted-repeated transposable elements) are a particular class of defective DNA transposons usually present within genomes as high copy number populations of highly homogeneous elements. Although an active MITE, the mPing element, has recently been characterized in rice, the transposition mechanism of MITEs remains unknown. It has been proposed that transposases of related tra...
متن کاملDramatic amplification of a rice transposable element during recent domestication.
Despite the prevalence of transposable elements in the genomes of higher eukaryotes, what is virtually unknown is how they amplify to very high copy numbers without killing their host. Here, we report the discovery of rice strains where a miniature inverted-repeat transposable element (mPing) has amplified from approximately 50 to approximately 1,000 copies in four rice strains. We characterize...
متن کاملIn planta mobilization of mPing and its putative autonomous element Pong in rice by hydrostatic pressurization.
The miniature Ping (mPing) is a recently discovered endogenous miniature inverted repeat transposable element (MITE) in rice, which can be mobilized by tissue culture or irradiation. It is reported here that mPing, together with one of its putative transposase-encoding partners, Pong, was efficiently mobilized in somatic cells of intact rice plants of two distinct cultivars derived from germina...
متن کاملA computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes.
Several recent reports indicate that mobile elements are frequently found in and flanking many wild-type plant genes. To determine the extent of this association, we performed computer-based systematic searches to identify mobile elements in the genes of two "model" plants, Oryza sativa (domesticated rice) and Arabidopsis thaliana. Whereas 32 common sequences belonging to nine putative mobile e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 26 شماره
صفحات -
تاریخ انتشار 2007