Monitoring liquid transport and chemical composition in lab on a chip systems using ion sensitive FET devices.

نویسندگان

  • Pagra Truman
  • Petra Uhlmann
  • Manfred Stamm
چکیده

A novel single silicon thin film field-effect-transistor (FET) is developed for use as a sensor to monitor transport and chemical properties of liquids in microfluidic systems. The sensor elements which are compatible with existing (bio-)chemical sensor schemes based on ion-sensitive-field-effect-transistors (ISFET) can detect capillary filling speed and level in aqueous solutions. Using a transitor based detection scheme, this approach has the potential to enable high speed flow detection on large scales with high spatial resolution. The prototype devices presented in the present study have been fabricated by using a simple cost-efficient route for circuit board lithography. The thin film FET device characteristics are discussed and a theoretical model for liquid transport detection based on FETs is developed. Typical experimental data are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications

MUMPs (Multi-User MEMS Process) based microchannels made of either glass or polysilicon have been successfully designed, fabricated and tested. The fabrication process used timed wet-chemical etching to selectively etch sacrificial materials with the assistance of etch holes. The prototype glass and polysilicon microchannels have cross-section areas of 70 m×4 m and 70 m×2 m, respectively, and b...

متن کامل

Passive microfluidic pumping using coupled capillary/evaporation effects.

Controlled pumping of fluids through microfluidic networks is a critical unit operation ubiquitous to lab-on-a-chip applications. Although there have been a number of studies involving the creation of passive flows within lab-on-a-chip devices, none has shown the ability to create temporally stable flows for periods longer than several minutes. Here a passive pumping approach is presented in wh...

متن کامل

Numerical Study on Low Reynolds Mixing ofT-Shaped Micro-Mixers with Obstacles

Micromixers are one of the most crucial components of Lab-On-a-Chip devices with the intention of mixing and dispersion of reagents like small molecules and particles. The challenge facing micromixers is typically insufficient mixing efficiency in basic designs, which results in longer microchannels. Therefore, it is desirable to increase mixing efficiency, in order to decrease mixing length, w...

متن کامل

Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview

Microfluidics-based lab-on-chip (LOC) systems are an active research area that is revolutionising high-throughput sequencing for the fast, sensitive and accurate detection of a variety of pathogens. LOCs also serve as portable diagnostic tools. The devices provide optimum control of nanolitre volumes of fluids and integrate various bioassay operations that allow the devices to rapidly sense pat...

متن کامل

THE CARRIER FACILITATED TRANSPORT OF THE LITHIUM IONS BY A SERIES OF NON-CYCLIC SYNTHETIC IONOPHORES

The carrier facilitated transport of lithium picrate was studied using a series of non-cyclic polyethers containing different end groups and chain lengths through Bulk Liquid Membrane (BLM) and Supported Liquid Membrane (SLM) systems. The various membrane supports used are viz. PTFE, cellulose nitrate, and dialysis membrane and onion membrane. The amount of Li+ transported depends upon the stru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 6 9  شماره 

صفحات  -

تاریخ انتشار 2006