How does evolution tune biological noise?

نویسندگان

  • Magali Richard
  • Gaël Yvert
چکیده

Part of molecular and phenotypic differences between individual cells, between body parts, or between individuals can result from biological noise. This source of variation is becoming more and more apparent thanks to the recent advances in dynamic imaging and single-cell analysis. Some of these studies showed that the link between genotype and phenotype is not strictly deterministic. Mutations can change various statistical properties of a biochemical reaction, and thereby the probability of a trait outcome. The fact that they can modulate phenotypic noise brings up an intriguing question: how may selection act on these mutations? In this review, we approach this question by first covering the evidence that biological noise is under genetic control and therefore a substrate for evolution. We then sequentially inspect the possibilities of negative, neutral, and positive selection for mutations increasing biological noise. Finally, we hypothesize on the specific case of H2A.Z, which was shown to both buffer phenotypic noise and modulate transcriptional efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

Adaptive Optimum Notch Filter for Periodic Noise Reduction in Digital Images

Periodic noises are unwished and spurious signals that create repetitive pattern on images and decreased the visual quality. Firstly, this paper investigates various methods for reducing the effects of the periodic noise in digital images. Then an adaptive optimum notch filter is proposed. In the proposed method, the regions of noise frequencies are determined by analyzing the spectral of noisy...

متن کامل

Adaptive Stochastic Resonance

This paper shows how adaptive systems can learn to add an optimal amount of noise to some nonlinear feedback systems. Noise can improve the signal-to-noise ratio of many nonlinear dynamical systems. This “stochastic resonance” (SR) effect occurs in a wide range of physical and biological systems. The SR effect may also occur in engineering systems in signal processing, communications, and contr...

متن کامل

Noise-sensitive measure for stochastic resonance in biological oscillators.

There has been ample experimental evidence that a variety of biological systems use the mechanism of stochastic resonance for tasks such as prey capture and sensory information processing. Traditional quantities for the characterization of stochastic resonance, such as the signal-to-noise ratio, possess a low noise sensitivity in the sense that they vary slowly about the optimal noise level. To...

متن کامل

Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered‎. ‎The coefficients are assumed to have linear growth‎. ‎We do not impose coercivity conditions on coefficients‎. ‎A novel method of proof for establishing existence and uniqueness of the mild solution is proposed‎. ‎Examples on stochastic partial differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014