In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries

نویسندگان

  • Jingchao Chai
  • Zhihong Liu
  • Jun Ma
  • Jia Wang
  • Xiaochen Liu
  • Haisheng Liu
  • Jianjun Zhang
  • Guanglei Cui
  • Liquan Chen
چکیده

Nowadays it is extremely urgent to seek high performance solid polymer electrolyte that possesses both interfacial stability toward lithium/graphitic anodes and high voltage cathodes for high energy density solid state batteries. Inspired by the positive interfacial effect of vinylene carbonate additive on solid electrolyte interface, a novel poly (vinylene carbonate) based solid polymer electrolyte is presented via a facile in situ polymerization process in this paper. It is manifested that poly (vinylene carbonate) based solid polymer electrolyte possess a superior electrochemical stability window up to 4.5 V versus Li/Li+ and considerable ionic conductivity of 9.82 × 10-5 S cm-1 at 50 °C. Moreover, it is demonstrated that high voltage LiCoO2/Li batteries using this solid polymer electrolyte display stable charge/discharge profiles, considerable rate capability, excellent cycling performance, and decent safety characteristic. It is believed that poly (vinylene carbonate) based electrolyte can be a very promising solid polymer electrolyte candidate for high energy density lithium batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries.

Behaviors of functional interfaces are crucial factors in the performance and safety of energy storage and conversion devices. Indeed, solid electrode-solid electrolyte interfacial impedance is now considered the main limiting factor in all-solid-state batteries rather than low ionic conductivity of the solid electrolyte. Here, we present a new approach to conducting in situ scanning transmissi...

متن کامل

Comparative Study of Fluoroethylene Carbonate and Vinylene Carbonate for Silicon Anodes in Lithium Ion Batteries

The cycling performance and SEI composition of Si nano-particle anodes in electrolytes containing 5–25 wt% fluoroethyelene carbonate (FEC) and 3–6 wt% vinylene carbonate (VC) has been investigated by a combination of by electrochemical cycling, electrochemical impedance spectroscopy, IR-ATR and XPS. The incorporation of FEC or VC changes the cycling performance, impedance, electrode morphology,...

متن کامل

A Multi-Component Additive to Improve the Thermal Stability of Li(Ni1/3Co1/3Mn1/3)O2-Based Lithium Ion Batteries

To improve the safety of lithium ion batteries, a multi-component (MC) additive (consisting of vinylene carbonate (VC), 1,3-propylene sulfite (PS) and dimethylacetamide (DMAC)) is used in the baseline electrolyte (1.0 M LiPF6/ethylene carbonate (EC) + diethyl carbonate (DEC)). The electrolyte with the MC additive is named safety electrolyte. The thermal stabilities of fully charged Li(Ni1/3Co1/...

متن کامل

Understanding the surface modification mechanism of electrolyte additives on silicon anodes in Li-ion batteries

Silicon has been widely considered as the next generation anode material for lithium-ion batteries, due to its substantially higher capacity compared to conventionally used graphite. However, silicon-based electrodes suffer from problems such as poor capacity retention and low coulombic efficiency. Significant amount of work has been devoted to improve the performance of silicon electrodes. Amo...

متن کامل

Fabrication of All-Solid-State Lithium-Ion Cells Using Three-Dimensionally Structured Solid Electrolyte Li7La3Zr2O12 Pellets

All-solid-state lithium-ion batteries using Li+-ion conducting ceramic electrolytes have been focused on as attractive future batteries for electric vehicles and renewable energy conversion systems because high safety can be realized due to non-flammability of ceramic electrolytes. In addition, a higher volumetric energy density than that of current lithium-ion batteries is expected since the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017