A Synthetic Minority Oversampling Method Based on Local Densities in Low-Dimensional Space for Imbalanced Learning

نویسندگان

  • Zhipeng Xie
  • Liyang Jiang
  • Tengju Ye
  • Xiaoli Li
چکیده

Imbalanced class distribution is a challenging problem in many real-life classification problems. Existing synthetic oversampling do suffer from the curse of dimensionality because they rely heavily on Euclidean distance. This paper proposed a new method, called Minority Oversampling Technique based on Local Densities in Low-Dimensional Space (or MOT2LD in short). MOT2LD first maps each training sample into a low-dimensional space, and makes clustering of their low-dimensional representations. It then assigns weight to each minority sample as the product of two quantities: local minority density and local majority count, indicating its importance of sampling. The synthetic minority class samples are generated inside some minority cluster. MOT2LD has been evaluated on 15 real-world data sets. The experimental results have shown that our method outperforms some other existing methods including SMOTE, Borderline-SMOTE, ADASYN, and MWMOTE, in terms of G-mean and F-measure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immune Centroids Over-Sampling Method for Multi-Class Classification

To improve the classification performance of imbalanced learning, a novel over-sampling method, Global Immune Centroids OverSampling (Global-IC) based on an immune network, is proposed. GlobalIC generates a set of representative immune centroids to broaden the decision regions of small class spaces. The representative immune centroids are regarded as synthetic examples in order to resolve the i...

متن کامل

Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning

In recent years, mining with imbalanced data sets receives more and more attentions in both theoretical and practical aspects. This paper introduces the importance of imbalanced data sets and their broad application domains in data mining, and then summarizes the evaluation metrics and the existing methods to evaluate and solve the imbalance problem. Synthetic minority oversampling technique (S...

متن کامل

CUSBoost: Cluster-based Under-sampling with Boosting for Imbalanced Classification

Class imbalance classification is a challenging research problem in data mining and machine learning, as most of the real-life datasets are often imbalanced in nature. Existing learning algorithms maximise the classification accuracy by correctly classifying the majority class, but misclassify the minority class. However, the minority class instances are representing the concept with greater in...

متن کامل

A Sampling Method Based on Gauss Kernel Learning and the Expanding Research

In this paper, the expansion of feature points of the linear scale space is transformed into the classification of multi-scale data set within the same scale, which belongs to the classification of scale invariant non-equilibrium .The paper presents a sample approach based on kernel learning to solve classification on imbalance dataset by Support Vector Machine (SVM). The method first preproces...

متن کامل

Geometric SMOTE: Effective oversampling for imbalanced learning through a geometric extension of SMOTE

Classification of imbalanced datasets is a challenging task for standard algorithms. Although many methods exist to address this problem in different ways, generating artificial data for the minority class is a more general approach compared to algorithmic modifications. SMOTE algorithm and its variations generate synthetic samples along a line segment that joins minority class instances. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015