A polynomial time 3-2-approximation algorithm for the vertex cover problem on a class of graphs

نویسندگان

  • Qiaoming Han
  • Abraham P. Punnen
  • Yinyu Ye
چکیده

We develop a polynomial time 3-2-approximation algorithm to solve the vertex cover problem on a class of graphs satisfying a property called “active edge hypothesis”. The algorithm also guarantees an optimal solution on specially structured graphs. Further, we give an extended algorithm which guarantees a vertex cover S1 on an arbitrary graph such that |S1| ≤ 32 |S*| + ξ where S* is an optimal vertex cover and ξ is an error bound identified by the algorithm. We obtained ξ = 0 for all the test problems we have considered which include specially constructed instances that were expected to be hard. So far we could not construct a graph that gives ξ 6= 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The robust vertex centdian location problem with interval vertex weights on general graphs

In this paper, the robust vertex centdian  location  problem with uncertain vertex weights on general graphs is studied. The used criterion to solve the problem is the min-max  regret criterion. This problem  is  investigated  with objective function contains $lambda$  and  a polynomial time algorithm for the problem is presented. It is shown that the vertex centdian problem on general graphs i...

متن کامل

Complexity and Approximation Results for the Connected Vertex Cover Problem

We study a variation of the vertex cover problem where it is required that the graph induced by the vertex cover is connected. We prove that this problem is polynomial in chordal graphs, has a PTAS in planar graphs, is APX-hard in bipartite graphs and is 5/3-approximable in any class of graphs where the vertex cover problem is polynomial (in particular in bipartite graphs).

متن کامل

Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs

We study a variation of the vertex cover problem where it is required that the graph induced by the vertex cover is connected. We prove that this problem is polynomial in chordal graphs, has a PTAS in planar graphs, is APX-hard in bipartite graphs and is 5/3-approximable in any class of graphs where the vertex cover problem is polynomial (in particular in bipartite graphs). Finally, dealing wit...

متن کامل

On Approximating Minimum Vertex Cover for Graphs with Perfect Matching

It has been a challenging open problem whether there is a polynomial time approximation algorithm for the Vertex Cover problem whose approximation ratio is bounded by a constant less than 2. In this paper, we study the Vertex Cover problem on graphs with perfect matching (shortly, VC-PM). We show that if the VC-PM problem has a polynomial time approximation algorithm with approximation ratio bo...

متن کامل

ON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS

Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0712.3335  شماره 

صفحات  -

تاریخ انتشار 2008