Natural Guided Genome Engineering Reveals Transcriptional Regulators Controlling Quorum-Sensing Signal Degradation

نویسندگان

  • Abbas El Sahili
  • Anthony Kwasiborski
  • Nicolas Mothe
  • Christophe Velours
  • Pierre Legrand
  • Solange Moréra
  • Denis Faure
  • Ya-Wen He
چکیده

Quorum-quenching (QQ) are natural or engineered processes disrupting the quorum-sensing (QS) signalling which controls virulence and persistence (e.g. biofilm) in numerous bacteria. QQ involves different enzymes including lactonases, amidases, oxidases and reductases which degrade the QS molecules such as N-acylhomoserine lactones (NAHL). Rhodococcus erythropolis known to efficiently degrade NAHL is proposed as a biocontrol agent and a reservoir of QQ-enzymes for biotechnology. In R. erythropolis, regulation of QQ-enzymes remains unclear. In this work, we performed genome engineering on R. erythropolis, which is recalcitrant to reverse genetics, in order to investigate regulation of QQ-enzymes at a molecular and structural level with the aim to improve the QQ activity. Deep-sequencing of the R. erythropolis enhanced variants allowed identification of a punctual mutation in a key-transcriptional factor QsdR (Quorum sensing degradation Regulation) which regulates the sole QQ-lactonase QsdA identified so far. Using biophysical and structural studies on QsdR, we demonstrate that QQ activity can be improved by modifying the regulation of QQ-enzymes degrading QS signal. This modification requiring the change of only one amino-acid in a transcriptional factor leads to an enhanced R. erythropolis in which the QS-signal degradation pathway is strongly activated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orphan LuxR regulators of quorum sensing.

Bacteria can modulate their behavior by releasing and responding to the accumulation of signal molecules. This population co-ordination, referred to as quorum sensing, is prevalent in Gram-negative and Gram-positive bacteria. The essential constituents of quorum-sensing systems include a signal producer, or synthase, and a cognate transcriptional regulator that responds to the accumulated signa...

متن کامل

In silico structural analysis of quorum sensing genes in Vibrio fischeri

Quorum sensing controls the luminescence of Vibrio fischeri through the transcriptional activator LuxR and the specific autoinducer signal produced by luxI. Amino acid sequences of these two genes were analyzed using bioinformatics tools. LuxI consists of 193 amino acids and appears to contain five α-helices and six ß-sheets when analyzed by SSpro8. LuxI belongs to the autoinducer synthetase fa...

متن کامل

Transcriptional control of the quorum sensing response in yeast.

Quorum sensing is a process of intercellular communication. It allows individual cells to assess population density and to co-ordinate behaviour by secreting and sensing communication molecules. In the yeast Saccharomyces cerevisiae, the communication molecules are the aromatic alcohols tryptophol and phenylethanol, and quorum sensing regulates the transition between the solitary yeast form and...

متن کامل

Relationships between the Regulatory Systems of Quorum Sensing and Multidrug Resistance

Cell-cell communications, known as quorum sensing (QS) in bacteria, involve the signal molecules as chemical languages and the corresponding receptors as transcriptional regulators. In Gram-negative bacteria, orphan LuxR receptors recognize signals more than just acylhomoserine lactones, and modulate interspecies and interkingdom communications. Whereas, in the Gram-positive Streptomyces, pseud...

متن کامل

Genome Sequence Analysis Reveals Evidence of Quorum-Sensing Genes Present in Aeromonas hydrophila strain KOR1, Isolated from a Mangrove Plant (Kandelia obovata)

Aeromonas hydrophila strain KOR1, isolated from mangrove rhizosphere soil, has the ability to produce the quorum-sensing signal molecule. Here, we report the 4.78-Mb genome sequence of strain KOR1, and found its quorum-sensing encoding gene LuxR. The data will be crucial to understanding the quorum-sensing-dependent phenotypes of this bacterium.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015