Responses of proximal tubule sodium transporters to acute injury-induced hypertension.

نویسندگان

  • Li E Yang
  • Patrick K K Leong
  • Shaohua Ye
  • Vito M Campese
  • Alicia A McDonough
چکیده

Renal injury-induced by phenol injection activates renal sympathetic afferent pathways, increases norepinephrine release from the posterior hypothalamus, activates renal efferent pathways, and provokes a rapid and persistent hypertension. This study aimed to determine whether phenol injury provoked a redistribution of proximal Na(+) transporters from internal stores to the apical cell surface mediated by sympathetic activation, a response that could contribute to generation or maintenance of hypertension. Anesthetized rats were cannulated for arterial blood pressure tracing and saline infusion and then 50 microl 10% phenol or saline was injected into one renal cortex (n = 7 each). Fifty minutes after injection, kidneys were removed and renal cortex membranes from injected kidneys were fractionated on sorbitol gradients and pooled into three windows (WI-WIII) that contained enriched apical brush border (WI); mixed apical, intermicrovillar cleft and dense apical tubules (WII); and intracellular membranes (WIII). Na(+) transporter distributions were determined by immunoblot and expressed as percentage of total in gradient. Acute phenol injury increased blood pressure 20-30 mmHg and led to redistribution of Na(+)/H(+) exchanger type 3 (NHE3) out of WIII (from 22.79 +/- 4.75 to 10.79 +/- 2.01% of total) to WI (13.07 +/- 1.97 to 27.15 +/- 4.08%), Na(+)-P(i) cotransporter 2 out of WII (68.72 +/- 1.95 to 59.76 +/- 2.21%) into WI (9.5 +/- 1.62 to 18.7 +/- 1.45%), and a similar realignment of dipeptidyl-peptidase IV immunoreactivity and alkaline phosphatase activity to WI. Renal denervation before phenol injection prevented the NHE3 redistribution. By confocal microscopy, NHE3 localized to the brush border after phenol injection. The results indicate that phenol injury provokes redistribution of Na(+) transporters from intermicrovillar cleft/intracellular membrane pools to apical membranes associated with sympathetic nervous system activation, which may contribute to phenol injury-induced hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interleukin-17A Regulates Renal Sodium Transporters and Renal Injury in Angiotensin II-Induced Hypertension.

Angiotensin II-induced hypertension is associated with an increase in T-cell production of interleukin-17A (IL-17A). Recently, we reported that IL-17A(-/-) mice exhibit blunted hypertension, preserved natriuresis in response to a saline challenge, and decreased renal sodium hydrogen exchanger 3 expression after 2 weeks of angiotensin II infusion compared with wild-type mice. In the current stud...

متن کامل

The Effects of Insulin Resistance and Inflammation on Renal Proximal Tubule Sodium Transport and Hypertension

Insulin resistance, closely linked to inflammation, is recognized as a key factor in the onset and aggravation of diabetes, cardio-renal syndrome, hypertension, and obesity. In the renal proximal tubule, insulin resistance may increase renal sodium reabsorption, leading to hypertension, edema and sometimes heart failure. Recently some anti-diabetic agents have been shown to have effects on the ...

متن کامل

Reversible effects of acute hypertension on proximal tubule sodium transporters.

Acute hypertension provokes a rapid decrease in proximal tubule sodium reabsorption with a decrease in basolateral membrane sodium-potassium-ATPase activity and an increase in the density of membranes containing apical membrane sodium/hydrogen exchangers (NHE3) [Y. Zhang, A. K. Mircheff, C. B. Hensley, C. E. Magyar, D. G. Warnock, R. Chambrey, K.-P. Yip, D. J. Marsh, N.-H. Holstein-Rathlou, and...

متن کامل

AT1A angiotensin receptors in the renal proximal tubule regulate blood pressure.

Hypertension affects more than 1.5 billion people worldwide but the precise cause of elevated blood pressure (BP) cannot be determined in most affected individuals. Nonetheless, blockade of the renin-angiotensin system (RAS) lowers BP in the majority of patients with hypertension. Despite its apparent role in hypertension pathogenesis, the key cellular targets of the RAS that control BP have no...

متن کامل

Phenol injury-induced hypertension stimulates proximal tubule Na+/H+ exchanger activity.

Injection of 50 microl 10% phenol into rat renal cortex activates renal sympathetic nerve activity which provokes acute hypertension that persists for weeks. We have previously shown with membrane fractionation that phenol injury caused a redistribution of the main proximal tubule (PT) apical transporter NHE3 (Na+/H+ exchanger isoform 3) to low density membranes enriched in apical microvilli. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 284 2  شماره 

صفحات  -

تاریخ انتشار 2003