Reprogramming the Dynamin 2 mRNA by Spliceosome-mediated RNA Trans-splicing
نویسندگان
چکیده
Dynamin 2 (DNM2) is a large GTPase, ubiquitously expressed, involved in membrane trafficking and regulation of actin and microtubule cytoskeletons. DNM2 mutations cause autosomal dominant centronuclear myopathy which is a rare congenital myopathy characterized by skeletal muscle weakness and histopathological features including nuclear centralization in absence of regeneration. No curative treatment is currently available for the DNM2-related autosomal dominant centronuclear myopathy. In order to develop therapeutic strategy, we evaluated here the potential of Spliceosome-Mediated RNA Trans-splicing technology to reprogram the Dnm2-mRNA in vitro and in vivo in mice. We show that classical 3'-trans-splicing strategy cannot be considered as accurate therapeutic strategy regarding toxicity of the pre-trans-splicing molecules leading to low rate of trans-splicing in vivo. Thus, we tested alternative strategies devoted to prevent this toxicity and enhance frequency of trans-splicing events. We succeeded to overcome the toxicity through a 5'-trans-splicing strategy which also allows detection of trans-splicing events at mRNA and protein levels in vitro and in vivo. These results suggest that the Spliceosome-Mediated RNA Trans-splicing strategy may be used to reprogram mutated Dnm2-mRNA but highlight the potential toxicity linked to the molecular tools which have to be carefully investigated during preclinical development.
منابع مشابه
Messenger RNA reprogramming by spliceosome-mediated RNA trans-splicing.
In the human genome, the majority of protein-encoding genes are interrupted by introns, which are removed from primary transcripts by a macromolecular enzyme known as the spliceosome. Spliceosomes can constitutively remove all the introns in a primary transcript to yield a fully spliced mRNA or alternatively splice primary transcripts leading to the production of many different mRNAs from one g...
متن کاملTrans-splicing correction of tau isoform imbalance in a mouse model of tau mis-splicing
Abnormal metabolism of the tau protein is central to the pathogenesis of a number of dementias, including Alzheimer's disease. Aberrant alternative splicing of exon 10 in the tau pre-mRNA resulting in an imbalance of tau isoforms is one of the molecular causes of the inherited tauopathy, FTDP-17. We showed previously in heterologous systems that exon 10 inclusion in tau mRNA could be modulated ...
متن کاملCorrection of tau mis-splicing caused by FTDP-17 MAPT mutations by spliceosome-mediated RNA trans-splicing
Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) is caused by mutations in the MAPT gene, encoding the tau protein that accumulates in intraneuronal lesions in a number of neurodegenerative diseases. Several FTDP-17 mutations affect alternative splicing and result in excess exon 10 (E10) inclusion in tau mRNA. RNA reprogramming using spliceosome-mediated RNA trans-spl...
متن کاملMolecular imaging of gene expression in living subjects by spliceosome-mediated RNA trans-splicing.
Spliceosome-mediated RNA trans-splicing (SMaRT) provides an effective means to reprogram mRNAs and the proteins they encode. SMaRT technology has a broad range of applications, including RNA repair and molecular imaging, each governed by the nature of the sequences delivered by the pre-trans-splicing molecule. Here, we show the ability of SMaRT to optically image the expression of an exogenous ...
متن کاملEvolutionary Insights into RNA trans-Splicing in Vertebrates.
Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide...
متن کامل