Genetic interaction between Sox10 and Zfhx1b during enteric nervous system development.
نویسندگان
چکیده
The involvement of SOX10 and ZFHX1B in Waardenburg-Hirschsprung disease (hypopigmentation, deafness, and absence of enteric ganglia) and Mowat-Wilson syndrome (mental retardation, facial dysmorphy and variable congenital malformations including Hirschsprung disease) respectively, highlighted the importance of both transcription factors during enteric nervous system (ENS) development. The expression and function of SOX10 are now well established, but those of ZFHX1B remain elusive. Here we describe the expression profile of Zfhx1b and its genetic interactions with Sox10 during mouse ENS development. Through phenotype analysis of Sox10;Zfhx1b double mutants, we show that a coordinated and balanced interaction between these two genes is required for normal ENS development. Double mutants present with more severe ENS defects due to decreased proliferation of enteric progenitors and increased neuronal differentiation from E11.5 onwards. Thus, joint activity between these two transcription factors is crucial for proper ENS development and our results contribute to the understanding of the molecular basis of ENS defects observed both in mutant mouse models and in patients carrying SOX10 and ZFHX1B mutations.
منابع مشابه
Genetic evidence does not support direct regulation of EDNRB by SOX10 in migratory neural crest and the melanocyte lineage
Mutations in the transcription factor Sox10 or Endothelin Receptor B (Ednrb) result in Waardenburg Syndrome Type IV (WS-IV), which presents with deficiencies of neural crest derived melanocytes (hypopigmentation) and enteric ganglia (hypoganglionosis). As Sox10 and Ednrb are expressed in mouse migratory neural crest cells and melanoblasts, we investigated the possibility that SOX10 and EDNRB fu...
متن کاملReplacement of the Sox10 transcription factor by Sox8 reveals incomplete functional equivalence.
Sox8 and Sox10 are two closely related transcription factors of the Sox protein family with overlapping expression patterns during development. They are believed to perform very similar functions because several developmental processes, including enteric nervous system development and oligodendrocyte differentiation, are regulated by both Sox proteins. To analyze the extent of functional equiva...
متن کاملHypomorphic Sox10 alleles reveal novel protein functions and unravel developmental differences in glial lineages.
The transcription factor Sox10 regulates early neural crest development, specification of neural crest-derived lineages and terminal differentiation of oligodendrocytes in the central nervous system. Here, we generated two novel hypomorphic Sox10 alleles in the mouse. Mutant mice either expressed a Sox10 protein with a triple alanine substitution in the dimerization domain, or a Sox10 protein w...
متن کاملMaintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling.
The transcriptional regulator SOX10 and the signalling molecule endothelin 3 have important roles in the development of the mammalian enteric nervous system (ENS). Using a clonal cell culture system, we show that SOX10 inhibits overt neuronal and glial differentiation of multilineage ENS progenitor cells (EPCs), without interfering with their neurogenic commitment. We also demonstrate that endo...
متن کاملTitle Transcriptional regulation of RET by Nkx 2 - 1 , Phox 2 b , Sox 10 , andPax 3
The rearranged during transfection (RET) gene encodes a single-pass receptor whose proper expression and function are essential for the development of enteric nervous system (ENS). Mutations in RET regulatory regions are also associated with Hirschsprung’s disease (HSCR) (aganglionosis of the colon). We have previously showed that two polymorphisms in RET promoter are associated with the increa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 341 2 شماره
صفحات -
تاریخ انتشار 2010