Compartmentalized Calcium Signaling in Cilia Regulates Intraflagellar Transport

نویسندگان

  • Peter Collingridge
  • Colin Brownlee
  • Glen L. Wheeler
چکیده

Intraflagellar transport (IFT) underpins many of the important cellular roles of cilia and flagella in signaling and motility. The microtubule motors kinesin-2 and cytoplasmic dynein 1b drive IFT particles (protein complexes carrying ciliary component proteins) along the axoneme to facilitate the assembly and maintenance of cilia. IFT is regulated primarily by cargo loading onto the IFT particles, although evidence suggests that IFT particles also exhibit differential rates of movement. Here we demonstrate that intraflagellar Ca(2+) elevations act to directly regulate the movement of IFT particles. IFT-driven movement of adherent flagella membrane glycoproteins in the model alga Chlamydomonas enables flagella-mediated gliding motility. We find that surface contact promotes the localized accumulation of IFT particles in Chlamydomonas flagella. Highly compartmentalized intraflagellar Ca(2+) elevations initiate retrograde transport of paused IFT particles to modulate their accumulation. Gliding motility induces mechanosensitive intraflagellar Ca(2+) elevations in trailing (dragging) flagella only, acting to specifically clear the accumulated microtubule motors from individual flagella and prevent a futile tug-of-war. Our results demonstrate that compartmentalized intraciliary Ca(2+) signaling can regulate the movement of IFT particles and is therefore likely to play a central role in directing the movement and distribution of many ciliary proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shared and Distinct Mechanisms of Compartmentalized and Cytosolic Ciliogenesis

Most motile and all non-motile (also known as primary) eukaryotic cilia possess microtubule-based axonemes that are assembled at the cell surface to form hair-like or more elaborate compartments endowed with motility and/or signaling functions. Such compartmentalized ciliogenesis depends on the core intraflagellar transport (IFT) machinery and the associated Bardet-Biedl syndrome complex (BBSom...

متن کامل

Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components.

Primary cilia are required for proper Sonic Hedgehog (Shh) signaling in mammals. However, their role in the signal transduction process remains unclear. We have identified sister of open brain (sopb), a null allele of mouse Intraflagellar transport protein 122 (Ift122). IFT122 negatively regulates the Shh pathway in the cilium at a step downstream of the Shh ligand and the transmembrane protein...

متن کامل

Organelle Size: A Cilium Length Signal Regulates IFT Cargo Loading

Cilia grow by assembling structural precursors delivered to their tips by intraflagellar transport. New work on ciliary length control indicates that, during ciliary growth, cilia send a length signal to the cytoplasm that regulates cargo loading onto the constitutively trafficking intraflagellar transport machinery.

متن کامل

Sensory signaling-dependent remodeling of olfactory cilia architecture in C. elegans.

Nonmotile primary cilia are sensory organelles composed of a microtubular axoneme and a surrounding membrane sheath that houses signaling molecules. Optimal cellular function requires the precise regulation of axoneme assembly, membrane biogenesis, and signaling protein targeting and localization via as yet poorly understood mechanisms. Here, we show that sensory signaling is required to mainta...

متن کامل

Hypoxia regulates assembly of cilia in suppressors of Tetrahymena lacking an intraflagellar transport subunit gene.

We cloned a Tetrahymena thermophila gene, IFT52, encoding a homolog of the Chlamydomonas intraflagellar transport protein, IFT52. Disruption of IFT52 led to loss of cilia and incomplete cytokinesis, a phenotype indistinguishable from that of mutants lacking kinesin-II, a known ciliary assembly transporter. The cytokinesis failures seem to result from lack of cell movement rather than from direc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013