A conjecture on the maximum cut and bisection width in random regular graphs
نویسندگان
چکیده
The asymptotic properties of random regular graphs are objects of extensive study in mathematics and physics. In this paper we argue, using the theory of spin glasses in physics, that in random regular graphs the maximum cut size asymptotically equals the number of edges in the graph minus the minimum bisection size. Maximum cut and minimal bisection are two famous NP-complete problems with no known general relation between them; hence our conjecture is a surprising property for random regular graphs. We further support the conjecture with numerical simulations. A rigorous proof of this relation is an obvious challenge.
منابع مشابه
Conjecture on the maximum cut and bisection width in random regular graphs
Asymptotic properties of random regular graphs are object of extensive study in mathematics. In this note we argue, based on theory of spin glasses, that in random regular graphs the maximum cut size asymptotically equals the number of edges in the graph minus the minimum bisection size. Maximum cut and minimal bisection are two famous NP-complete problems with no known general relation between...
متن کاملBounds on the bisection width for random d -regular graphs
In this paper we provide an explicit way to compute asymptotically almost sure upper bounds on the bisection width of random d-regular graphs, for any value of d. The upper bounds are obtained from the analysis of the performance of a randomized greedy algorithm to find bisections of d-regular graphs. We provide bounds for 5 ≤ d ≤ 12. We also give empirical values of the size of the bisection f...
متن کاملBounds on the max and min bisection of random cubic and random 4-regular graphs
In this paper, we present a randomized algorithm to compute the bisection width of cubic and 4-regular graphs. The analysis of the proposed algorithms on random graphs provides asymptotic upper bounds for the bisection width of random cubic and random 4-regular graphs with n vertices, giving upper bounds of 0:174039n for random cubic, and of 0:333333n for random 4-regular. We also obtain asympt...
متن کاملExtremal Cuts of Sparse Random Graphs
For Erdős-Rényi random graphs with average degree γ, and uniformly random γ-regular graph on n vertices, we prove that with high probability the size of both the Max-Cut and maximum bisection are n( γ 4 + P∗ √ γ 4 + o( √ γ)) + o(n) while the size of the minimum bisection is n( γ 4 − P∗ √ γ 4 + o( √ γ)) + o(n). Our derivation relates the free energy of the anti-ferromagnetic Ising model on such ...
متن کاملNew Spectral Lower Bounds on the Bisection Width of Graphs
The communication overhead is a major bottleneck for the execution of a process graph on a parallel computer system. In the case of two processors, the minimization of the communication can be modeled by the graph bisection problem. The spectral lower bound of 2jV j 4 for the bisection width of a graph is well-known. The bisection width is equal to 2jV j 4 iff all vertices are incident to 2 2 c...
متن کامل