Antenna Array Design in Aperture Synthesis Radiometers 169 Antenna Array Design in Aperture Synthesis Radiometers
نویسندگان
چکیده
During the past few decades, there has been growing interest in the use of microwave and millimeter wave radiometers for remote sensing of the Earth. Due to the need of large antennas and scanning mechanism, the conventional real aperture radiometer becomes infeasible for high spatial resolution application. Interferometric aperture synthesis was suggested as an alternative to real aperture radiometry for earth observation [Ruf et al., 1988]. Aperture synthesis radiometers (ASR) can synthesize a large aperture by sparsely arranging a number of small aperture antennas to achieve high spatial resolution without requiring very large and massive mechanical scanning antenna. The fundamental theory behind aperture synthesis technique is the same as the one used for decades in radio astronomy [Thompson et al., 2001], in which the product of pairs of small antennas and signal processing is used in place of a single large aperture. In aperture synthesis, the coherent product (correlation) of the signal from pairs of antennas is measured at different antenna-pair spacings (also called baselines). The product at each baseline yields a sample point in the Fourier transform of the brightness temperature map of the scene, and the scene itself is reconstructed by inverting the sampled transform. This chapter addresses the subject of antenna array design in ASR, which plays an important role in radiometric imaging of ASR. The chapter is organized as follows. In section 2, the basic principle of synthetic aperture radiometers is briefly formulated. In section 3, the topology optimization of the antenna array is concerned, aiming at minimum redundancy arrays (MRAs) for high spatial resolution. For one-dimensional case, different optimization methods for finding out minimum redundancy linear arrays (MRLAs) such as numerical algorithms and combinatorial methods are summarized, including their advantages and disadvantages. We also propose an effective restricted search method by exploiting the general structure of MRLAs. For two-dimensional case, different antenna array configurations as well as their spatial sampling patterns are compared, including rectangular sampling arrays, hexagonal sampling arrays, and nonuniform sampling arrays. Some original work on the design of thinned circular arrays is also described. In section 4, a novel antenna array for our HUST-ASR prototype is presented, which is a sparse antenna array with an offset parabolic cylinder reflector at millimeter wave band. 9
منابع مشابه
Phase Only Synthesis of Antenna Patterns Using Iterative Restoration Methods
In this work, the method of iterative Fourier transform phase reconstruction, conventionally used in holography and optical image reconstruction, is applied to phase only synthesis of antenna patterns. The method is applied to two types of pattern synthesis problems: "main lobe beam shaping" and "side-lobe-level reduction". The proposed method is most useful in the efficient employment of attai...
متن کاملCorrection to "A Two-Dimensional Doppler Radiometer for Earth Observation"
Compared to synthetic aperture radars (SARs), the angular resolution of microwave radiometers is quite poor. Traditionally, it has been limited by the physical size of the antenna. However, the angular resolution can be improved by means of aperture synthesis interferometric techniques. A narrow beam is synthesized during the image formation processing of the cross-correlations measured at zero...
متن کاملطراحی و ساخت آنتن مایکرواستریپ سه بانده و دوپلاریزه برای BTS
In this paper, a simple dual-band dual-polarized aperture stacked patch antenna with double sided notch is presented. This antenna is suitable for operation in telecommunication base stations. One of the bands covers the GSM band, while the other covers both DCS and UMTS bands. The proposed antenna shows good port decoupling of less than -30dB for dual linear polarization over its operating ban...
متن کاملRF interference analysis in aperture synthesis interferometric radiometers: application to L-band MIRAS instrument
Current spaceborne radiometers do not achieve the required spatial resolution demanded by the scientific community due to antenna-size technological limitations. In recent years, several space agencies have been studying aperture synthesis interferometric radiometers as a way of overcoming these limitations, which are more evident at low microwave frequencies (e.g., at L-band), where sea surfac...
متن کاملSuperresolution Source Location with Planar Arrays
■ The challenge of precision source location with a radio-frequency antenna array has existed from the beginnings of radiometry and has continued in modern applications with planar antenna arrays. Early work in this field was limited to estimating single source directions in one dimension with systems like crossed-loop radiometers. Currently, more advanced systems attempt to estimate azimuth an...
متن کامل