Risk Estimation via Regression
نویسندگان
چکیده
We introduce a regression-based nested Monte Carlo simulation method for the estimation of financial risk. An outer simulation level is used to generate financial risk factors and an inner simulation level is used to price securities and compute portfolio losses given risk factor outcomes. The mean squared error (MSE) of standard nested simulation converges at the rate k−2/3, where k measures computational effort. The proposed regression method combines information from different risk factor realizations to provide a better estimate of the portfolio loss function. The MSE of the regression method converges at the rate k−1 until reaching an asymptotic bias level which depends on the magnitude of the regression error. Numerical results consistent with our theoretical analysis are provided and numerical comparisons with other methods are also given.
منابع مشابه
Penalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملEstimation of portfolio efficient frontier by different measures of risk via DEA
In this paper, linear Data Envelopment Analysis models are used to estimate Markowitz efficient frontier. Conventional DEA models assume non-negative values for inputs and outputs. however, variance is the only variable in these models that takes non-negative values. Therefore, negative data models which the risk of the assets had been used as an input and expected return was the output are uti...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملNonparametric estimation via empirical risk minimization
A general notion of universal consistency of nonparametric estimators is introduced that applies to regression estimation, conditional median estimation, curve fitting, pattern recognition, and learning concepts. General methods for proving consistency of estimators based on minimizing the empirical error are shown. In particular, distribution-free almost sure consistency of neural network esti...
متن کاملA NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...
متن کاملAdaptive estimation of an additive regression function from weakly dependent data
A d-dimensional nonparametric additive regression model with dependent observations is considered. Using the marginal integration technique and wavelets methodology, we develop a new adaptive estimator for a component of the additive regression function. Its asymptotic properties are investigated via the minimax approach under the L2 risk over Besov balls. We prove that it attains a sharp rate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Operations Research
دوره 63 شماره
صفحات -
تاریخ انتشار 2015